Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rõ hâm quên tính chất chia hết của phép nhân rồi à
n(5n+3)ta có n chia hết cho n nên n(5n+3) chia hết cho n
nên A chia hết cho n
Vì \(n⋮n\) với mọi n nguyên nên \(n\left(5n+3\right)⋮n\)
Hay A chia hết cho n với mọi n thuộc Z.
Vì n \(\in\) Z => 5n+3 \(\in\) Z. Mà n \(⋮\) n
=> n( 5n+3 ) \(⋮\) n với mọi n \(\in\) Z
Vậy A \(⋮\) n với mọi n \(\in\) Z
Nếu n = 2k (k thuộc Z)
=> n.(5n+3)= 2k.(10k+3) \(⋮\)2( vì 2k \(⋮\)2)
Nếu n = 2k+1 (k thuộc Z)
=> n.(5n+3)= (2k+1).(10k+5+3)=(2k+1).(10k+8) \(⋮\)2( vì 10k+8 \(⋮\)2)
=> Với mọi n thuộc Z thì \(n.\left(5n+3\right)⋮2\)
Đặt A=n.(5n+3)
TH1: n là số chẵn => Đặt n=2k (k\(\in\)Z)
Khi đó: \(A=2.k.\left(5.2k+3\right)⋮2\)
TH2: n là số lẻ => Đặt n=2m+1
Khi đó: \(A=\left(2m+1\right)\left[5.\left(2m+1\right)+3\right]\)
\(A=\left(2m+1\right)\left(10m+5+3\right)\)
\(A=\left(2m+1\right)\left(10m+8\right)\)
\(A=\left(2m+1\right).2\left(5m+4\right)⋮2\)
Vậy: với mọi n\(\in Z\) thì n.(5n+3) luôn chia hết cho 2
đặt a=n(5n+3)
TH1:nlà số chẵn=>đặt n=2k(k thuộc Z)
Khi đó : A=2k(5*2k+3)⋮2
TH2:n là số lẻ=>đặt n=2m+1
Khi đó A=(2m+1){5(2m+1)+3}
A=(2m+1)(10m+5+3)
A=(2m+1)(10m+8)
A=(2m+1)2(5m+4)⋮2
Vậy với mọi n∈Z thì n(5n+3)luôn ⋮ cho 2
xét n ⋮ 2 => n(5n + 3) ⋮ 2
xét n không chia hết cho 2 => n = 2k + 1
=> n(5n + 3) = (2k + 1)[5(2k + 1) + 3)
= (2k + 1)(10k + 8)
= 2(5k + 4)(2k + 1) ⋮ 2
vậy với mọi n nguyên thì n(5n + 3) ⋮ 2
Đặt A = n . (5n + 3 )
TH1 : n là số chẵn
\(\Rightarrow\)n = 2k ( k \(\in Z\))
Khi đó ta có : A = 2k . (5 . 2k +3 ) \(⋮2\)
TH2 : n là số lẻ
\(\Rightarrow\)n = 2b + 1
Khi đó ta có : A = (2b + 1) . [ 5 .(2b + 1 ) + 3 ]
A = (2b+1) . ( 10b + 5 + 3 )
A = (2b + 1) . (10b + 8)
A = (2b + 1 ) . 2 . (5b + 4) \(⋮2\)
Vậy với mọi n thuộc Z ta luôn có n . (5n + 3 ) \(⋮2\)\(\rightarrowĐPCM\)
#HOK TỐT #
A = n( 5n + 3 )
ta thấy \(n⋮n\Rightarrow n\left(5n+3\right)⋮n\Rightarrow A⋮n\)
vậy với mọi \(n\in Z\) thì \(A⋮n\)
\(A=n\left(5n+3\right)\)
=> \(\frac{A}{n}=\frac{n\left(5n+3\right)}{n}=5n+3\)
Với mọi \(n\in Z\)thì biểu thức \(\left(5n+3\right)\in Z\)
Vậy A chia hết cho n với mọi n thuộc Z