K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì \(3x+2⋮x-3\)

Vì: \(x-3⋮x-3\)

\(\Rightarrow\)\(3.\left(x-3\right)⋮x-3\)

\(\Rightarrow\)\(3x-3.3⋮x-3\)

\(\Rightarrow\)\(3x-9⋮x-3\)

Mà: \(3x+2⋮x-3\)

\(\Rightarrow\)\(\left(3x+2\right)-\left(3x-9\right)⋮x-3\)

\(\Rightarrow\)\(3x+2-3x+9⋮x-3\)

\(\Rightarrow\)\(\left(3x-3x\right)+\left(2+9\right)⋮x-3\)

\(\Rightarrow\)\(11⋮x-3\)

\(\Rightarrow\)\(x-3\inƯ\left(11\right)\)

\(\Rightarrow\)\(x-3\in\left\{-11;-1;1;11\right\}\)

\(\Rightarrow\)\(x\in\left\{-8;2;4;14\right\}\)

Vậy \(x\in\left\{-8;2;4;14\right\}\)

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

22 tháng 8 2019

Làm câu a,b thôi nha !

a)Tính A khi x=1;x=2;x=5/2

x=1

Thay x vào biểu thức A, ta có:

\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)

x=2

Thay x vào biểu thức A ta có:

\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)

x=5/2

Thay x vào biểu thức A ta có:

\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)

b)Tìm x thuộc Z để A là số nguyên:

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì:

=>\(3x+2⋮x-3\)

\(\Rightarrow3x-9+11⋮x-3\)

\(\Rightarrow3\left(x-3\right)+11⋮x-3\)

\(\Rightarrow11⋮x-3\)

\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)

Xét trường hợp

\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)

Vậy A là số nguyên thì

\(x\inƯ\left(4;14\right)\)

Các bài còn lại làm tương tự !

17 tháng 12 2016

Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)

\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)

\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)

Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)

\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)

\(\Rightarrow x\in\left\{4;36\right\}\)

Vậy số phần tử của tập hợp A là 2

21 tháng 8 2020

\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)

\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)

\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)

\(\Leftrightarrow7x-7=6x+30\)

\(\Leftrightarrow7x-6x=7+30\)

\(\Leftrightarrow x=37\)

Vậy nghiệm của phương trình là x = 37

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)

26 tháng 3 2017

Câu 2:

a) Ta có:\(\frac{a^2+a+3}{a+1}=\frac{a.a+a+3}{a+1}=\frac{a.\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

Vì a là số nguyên => (a+1) thuộc Ư(3)=(1;-1;3;-3)

Ta có bảng sau:

a+11-13-3
a0-22-4

Vậy a=(0;-2;2;-4)