Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM
\(a^2+b^2+3>ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+3\right)>2\left(ab+a+b\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)+4>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2+4>0\) \(\forall a,b\)
Vậy \(a^2+b^2+3>ab+a+b\forall a,b\)
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3=VP\)
Đưa 2 hạng từ trên về hằng đẳng thức số 6 và 7 , ta có :
(a + b)(a2 - ab + b2) + (a - b)(a2 + ab + b2)
= (a3 + b3) + (a3 - b3)
= a3 + b3 + a3 - b3
= 2a3
Vậy .......
a) \(\left(a+b\right)\left(a^2-a\cdot b+b^2\right)+\left(a-b\right)\left(a^2+a\cdot b+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3\)
b)\(\left(a+b\right)\left(\left(a-b\right)^2+ab\right)=\left(a+b\right)\left(a^2-2ab-b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)