Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)
b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5
A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35
\(A=7+7^3+7^5+......+7^{1999}\)
\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)
\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)
\(A=350+7^4.350+.......+7^{1996}.350\)
\(A=350.\left(1+7^4+......+7^{1996}\right)\)
\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)
\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)
Ta có:\(A=7+7^3+7^5+7^7+...+7^{1998}+7^{1999}\)
\(=\left(7+7^3\right)+\left(7^3+7^5\right)+...+\left(7^{1998}+7^{1999}\right)\)
\(=\left(7+7^3\right)+7^2.\left(7+7^3\right)+...+7^{^{1997}}.\left(7+7^3\right)\)
\(=350+7^2.350+...+7^{1997}.350\)
\(=350.\left(1+7^2+...+7^{1997}\right)\)
\(=35.10.\left(1+7^2+...+7^{1997}\right)\)
VÌ 35.10.(1+72+...+71997) CHIA HẾT CHO 35
NÊN A CHIA HẾT CHO 35
A=7 + 73 + 75 +... + 71999=(7 + 72) + (75 + 77)+...+(71997 + 71999)
A=7(1 + 72) + 75(1 + 72)+...+71997(1 + 72)
A=7 x 50 + 75 +...+ 7 =7 x 71997 x 50
=>A chia hết cho 5 (1)
A=7 + 73 + 75 +....+ 71999=7 x(70 + 72 + 74 + ...71998)
=>A Chia hết cho 7(2)
Mà ƯCLN(5,7)=1=>A Chia hết cho 35
Ta có :
\(A=5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.3.7⋮7\)
\(B=7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.5.11⋮11\)
\(C=81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.\left(3^2-3-1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45⋮45\)
Vậy A chia hết cho 7 , B chia hết cho 11 và C chia hết cho 45 .
A = 55 - 54 + 53
= 53( 52 - 5 + 1 )
= 53.21
Vì 21 chia hết cho 7 => 53.21 chia hết cho 7
=> A chia hết cho 7 ( đpcm )
B = 76 + 75 - 74
= 74( 72 + 7 - 1 )
= 74.55
Vì 55 chia hết cho 11 => 74.55 chia hết cho 11
=> B chia hết cho 11 ( đpcm )
C = 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 324( 34 - 33 - 32 )
= 324.45 chia hết cho 45
=> C chia hết cho 45 ( đpcm )
Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)
Ta có:
\(A=1+5+5^2+...+5^{2013}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)
\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)
\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)
Vì \(31⋮31\)
\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)
hay\(A⋮31\) (đpcm)
Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà
bạn vào câu hỏi tương tự nhé !!!
A = 7 + 7^3 + 7^5 + ... + 7^1999 = (7 + 7^3) + (7^5 + 7^7) + ..... + (7^1997 +7^1999)
A = 7(1 + 7^2) + 75(1 + 7^2) + ... + 71997(1 + 7^2)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1)
A = 7 + 7^3 + 7^5 + ... + 7^1999 = 7.( 7^0 + 7^2 + 7^4 + ... + 7^1998)
=> A Chia hết cho 7 (2)
Mà ƯCLN(5,7) = 1 => A Chia cho 35.