K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Sửa đề câu a là chia hết 59.

a, \(5^{n+3}-3.5^{n+1}+2^{6n+3}\)

\(=125.5^n-3.5.5^n+8.64^n\)

\(=110.5^n+8.64^n=\left(118-18\right).5^n+8.64^n\)

\(=118.5^n+8.\left(64^n-5^n\right)=2.59.5^n+8.59.P\)

\(=59\left(2.5^n+8.P\right)⋮59\)

17 tháng 8 2018

(118 -8 ) nhé, ấn nhầm mất -.-

25 tháng 11 2022

Bài 1:

a: \(=\left(19+69\right)\cdot A=88\cdot A⋮44\)

b: \(A=n\left(n^2-1\right)\left(n^2-4\right)\)

=n(n-1)(n+1)(n-2)(n+2)

Vì đây là 5 số liên tiếp

nên A chia hết cho 5!

=>A chia hết cho 120

c: \(C=\left(n+n+2\right)^3-3n\left(n+2\right)\left(n+2+n\right)+\left(n+1\right)^3\)

\(=9\left(n+1\right)^3-3n\left(n+2\right)\left(2n+2\right)\)

\(=9\left(n+1\right)^3-6n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là 3 số liên tiếp

nên n(n+1)(n+2) chia hết cho 6

=>-6n(n+1)(n+2) chia hết cho 36

=>C chia hết cho 36

3 tháng 11 2017

a,

6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \

Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau :

\(2n+5\) \(1\) \(7\) \(-1\) \(-7\)
\(n\) \(-2\) \(1\) \(-3\) \(-6\)

Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B

b, tường tự câu a

Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho

3 tháng 11 2017

Đặt tính chia:

6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7

\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị :

\(2n+1\) \(-1\) \(1\) \(-7\) \(7\)
\(n\) \(-1\) \(0\) \(-4\) \(3\)

\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)

\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)

b) Xem lại đề

\(\)

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

16 tháng 6 2015

\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)

\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)

\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)

\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)

(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24

(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24

biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24

9 tháng 11 2017

Gọi T(n) là mệnh đề cần chứng minh

*n=1 thì ta có: \(=10^1+18.1-28=0⋮27\). Vậy T(1) đúng

Giả sử T(k) đúng thì \(10^k+18k-28⋮27\)

Chứng minh T(k+1) đúng tức là chứng minh

\(10^{k+1}+18\left(k+1\right)-28⋮27\)

Ta có: \(10^{k+1}+18\left(k+1\right)-28=10^k.10+18k-10\)

Ta có: \(10^k+18k-28=27n\)(do chia hết cho 27)

\(\Rightarrow10^k=27n-18k+28\)

\(10^{k+1}+18\left(k+1\right)-28=10.\left(27n-18k+28\right)+18k-10\)

\(=27\left(10n-6k+10\right)⋮27\)

Vậy T(k+1) đúng

Theo nguyên lý quy nạp ta suy ra điều phứn chứứng minh

9 tháng 11 2017

C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27)
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)

C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27.
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27.
=> 10^k + 18k - 28 = 27m (m là số nguyên)
=> 10k = 27m -18k + 28 (1)
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2)
Thay (1) vào (2), ta được:
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm