Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của n + 5 và n + 4
=> n + 5 và n + 4 chia hết cho d
=> (n + 5) - (n + 4) chia hết cho d
=> 1 chia hết cho d => d = 1
Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau
=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 4 | 1 | -1 |
n | -3 | -5 |
b, đk n khác 4
Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\))
n + 5 - n - 4 = 1 => d = 1
Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
\(\Rightarrow\)21n + 4 \(⋮\)d \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)d \(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )
\(\Rightarrow\)14n + 3 \(⋮\)d \(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)d \(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
a) Gọi \(d\)là \(ƯC\left(n+4;n+3\right)\)\(\left(d\ne0;d\in Z\right)\)
\(\Rightarrow n+4⋮d;n+3⋮d\)
\(\Rightarrow n+4-n+3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{n+4}{n+3}\)là phân số tối giản.
b) Gọi \(d\)là \(ƯC\left(2n+1;n+1\right)\)
\(\Rightarrow2n+1⋮d;n+1⋮d\)
\(\Rightarrow2n+1⋮d;2\left(n+1\right)⋮d\)
\(hay\)\(2n+1⋮d;2n+2⋮d\)
\(\Rightarrow2n+2-2n+1\)\(⋮\)\(d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+1}{n+1}\)là phân số tối giản.
a,Gọi d=(14n+3;21n+5)
=>14n+3 (2) và 21n+5 chia hết cho d
=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)
Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1
+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm
b, Gọi d=(16n+5;24n+7)
=> 16n+5 (4) và 24n+7 chia hết cho d
=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)
Từ (3) và (4) => d=1
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
Gọi d là UCLN(3-n;n-4)
\(\Leftrightarrow\left\{{}\begin{matrix}n-3⋮d\\n-4⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>UCLN(3-n;n-4)=1
=>A là phân số tối giản