K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

đừng giải

11 tháng 3 2017

\(A=1+4+4^2+......+4^{100}\)

\(A=5+4+4^2+.....+4^{100}\)

\(A=5+4\left(1+4\right)+4^3\left(1+4\right)+......+4^{99}\left(1+4\right)\)

\(A=5+4\cdot5+4^3\cdot5+......+4^{99}\cdot5\)

\(A=5\left(1+4+4^3+.....+4^{99}\right)⋮5\)

Vậy \(A⋮5\)

11 tháng 3 2017

\(4A=4\left(1+4+4^2+.........+4^{1000}\right)\)

\(4A=4+4^2+........+4^{1001}\)

\(\Rightarrow4A-A=\left(4+4^2......+4^{1001}\right)-\left(1+4+4^2+......+4^{1000}\right)\)

\(\Rightarrow3A=4^{1001}-1\)

\(\Rightarrow A=\frac{4^{1001}-1}{3}\)

31 tháng 12 2015

Ta có:

A=(41+42)+(43+44)+...+(499+4100)

A=4.(1+4)+43.(1+4)+...+499.(1+4)

A=4.5+43.5+...+499.5

A=5.(4+43+...+499)

=>A chia hết cho 5

1 tháng 1 2016

bài này tớ đã biết nhưng chỉ thử các bạn thôi... cám ơn nhiều nha

 

7 tháng 11 2019

1.

\(\left(x+2\right)^3=\frac{1}{8}\)

\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow x+2=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}-2\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy \(x=-\frac{3}{2}.\)

2.

b) Ta có:

\(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5+1\right)\)

\(=5^3.\left(25-5+1\right)\)

\(=5^3.21\)

\(21⋮7\) nên \(5^3.21⋮7.\)

\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)

c) Ta có:

\(2^{19}+2^{21}+2^{22}\)

\(=2^{19}.\left(1+2^2+2^3\right)\)

\(=2^{19}.\left(1+4+8\right)\)

\(=2^{19}.13\)

\(13⋮13\) nên \(2^{19}.13⋮13.\)

\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 11 2019

bạn ơi ko ấy đc câu 2a hả ???

12 tháng 11 2016

Đặt A=\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

A=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

A=\(3^1\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

A=\(3^1\cdot4+3^3\cdot4+...+3^{99}\cdot4\)

A=\(4\left(3^1+3^3+...+3^{99}\right)⋮4\left(đpcm\right)\)

17 tháng 11 2016

thanks

5 tháng 4 2016

đặt \(S=1+4+4^2+......+4^{1999}\)

\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)

\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)

\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)

Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)

Ta có: 42000-1=(44)500-1=(...6)-1=....5

=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100

Vậy ta có điều phải chứng minh
 

5 tháng 4 2016

75 chia hết cho 25.

42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4

=> 75(42007 + ... + 4 + 1) không chia hết cho 100.

19 tháng 7 2018

\(A=75\left(4^{2004}+...+4+1\right)+25\)

\(=25\left(4-1\right)\left(4^{2004}+...+4+1\right)+25\)

\(=25\left[4\left(4^{2004}+...+4+1\right)-\left(4^{2004}+...+4+1\right)\right]+25\)

\(=25\left[\left(4+4^2+...+4^{2005}\right)-\left(1+4+...+4^{2004}\right)\right]+25\)

\(=25\left(4^{2005}-1\right)+25\)

\(=25.4^{2005}-25+25\)

\(=100.4^{2004}⋮100\)