Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(\Leftrightarrow4^n.64+4^n.16-4^n.4-4^n=4^n\left(64+16-4-1\right)\)
\(=4^n.75\)
Vì \(4^n\) luôn luôn chia hết cho 4 với mọi
Nên \(4^n.75\) Chia hết cho \(4.75=300\)
Vậy .....
a, Ta có : 8.2n + 1n + 1
= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)
= 23 + n . 1
Mà 23 + n luôn luôn ko chia hết cho10
Nên 8.2n + 1n + 1 ko chi hết cho10
Đặt A=\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
A=\(4^{n-1}\left(4^4+4^3-4^2-4\right)\)
A=\(4^{n-1}\cdot300⋮300\)
Ta có:
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}.\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n⋮300\left(đpm\right)\)
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
4\(^{n+3}\)+4\(^{n+2}\)-4\(^{n+1}\)-4\(^n\)
=\(4^3.4^n+4^2.4^n-4.4^n-4^n\)
=\(64.4^n+16.4^n-4.4^n-1.4^n\)
=\(75.4^{ }.4^{n-1}=300.4^{n-1}⋮300\)