K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

4a2 + b2 - 4a + 2b + \(\dfrac{5}{2}\) > 0

\(\Leftrightarrow\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+\dfrac{1}{2}>0\)

\(\Leftrightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}>0\)

\(\left(2a-1\right)^2+\left(b+1\right)^2\ge0\Rightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

29 tháng 1 2019

\(4a^2+b^2=5ab\)

\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

Vì 2a > b > 0

=> 4a > b => 4a - b > 0

\(\Rightarrow a-b=0\Leftrightarrow a=b\)

\(\Rightarrow P=\dfrac{ab}{4a^2-b^2}=\dfrac{a^2}{4a^2-a^2}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)

14 tháng 10 2022

b: =>4a^2-5ab+b^2=0

=>4a^2-4ab-ab+b^2=0

=>(a-b)(4a-b)=0

=>b=4a(loại) hoặc b=a(nhận)

Khi b=a thì \(P=\dfrac{a\cdot a}{4a^2-a^2}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)

5 tháng 10 2018

Đề:

Cho \(4a^2+b^2=5ab\)với 2a>b>0

Tính:\(\dfrac{ab}{4a^2-b^2}\)

Ta có: \(4a^2+b^2=5ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2=0\)

\(\Leftrightarrow4a\left(a-b\right)+-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\4a=b\end{matrix}\right.\)

Do \(2a>b\Rightarrow4a>b\)

Nên 4a=b là vô lý

Với a=b Thì:

\(\dfrac{ab}{4a^2-b^2}=\dfrac{a^2}{4a^2-a^2}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)

Vậy \(\dfrac{ab}{4a^2-b^2}=\dfrac{1}{3}với2a>b>0\)

Chúc bạn học tốt!

26 tháng 6 2020

.Bất phương trình bậc nhất một ẩn

26 tháng 3 2018

\(\left\{{}\begin{matrix}2a>b>0\\4a^2+b^2=5ab\\P=\dfrac{ab}{4a^2-b^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a>b>0\\4\dfrac{a}{b}+\dfrac{b}{a}=5\\P=\dfrac{1}{4\dfrac{a}{b}-\dfrac{b^{ }}{a}}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\dfrac{a}{b}=t;t>1\\4t+\dfrac{1}{t}=5\\P=\dfrac{1}{4t-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t>1\\4t^2-5t+1=0\\P=\dfrac{1}{4t-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t>1\\t\left(4t-1\right)-\left(4t-1\right)=0\\P=\dfrac{1}{4t-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t>1\\\left(4t-1\right)\left(t-1\right)=0\\P=\dfrac{1}{4t-1}=\dfrac{1}{4.1-1}=\dfrac{1}{3}\end{matrix}\right.\)

25 tháng 3 2018

ban kiem tra tin nhan nha!

https://olm.vn/hoi-dap/question/421195.html

16 tháng 12 2017

4a^2+b^2=5ab

=>4a^2 -5ab +b^2=0

=>4a^2-4ab+b^2-ab=0

=>4a(a-b)+b(b-a)=0

=>(4a-b)(a-b)=0\(\begin{matrix}\\\end{matrix}\)

=>\(\left[{}\begin{matrix}4a-b=0\\a-b=0\end{matrix}\right.\)=>\(\begin{matrix}4a=b\\a=b\end{matrix}\)

thay vào bt ta tính được 2 trường hợp là \(\dfrac{1}{3}\)\(\dfrac{-1}{3}\)

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

25 tháng 3 2017

Ta có \(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)\(\Rightarrow\)\(a=b\)(vì theo đề cho 4a > b)

Thay \(a=b\) vào \(C=\frac{4ab}{4a^2-b^2}=\frac{4a^2}{4a^2-a^2}=\frac{4a^2}{3a^2}=\frac{4}{3}\)

18 tháng 9 2016

\(a^2+b^2+c^2+\frac{21}{4}=\left(a^2+4\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+1\right)\)

Mà theo bđt Cauchy : \(a^2+4\ge2\sqrt{4a^2}=4a\) ; \(b^2+\frac{1}{4}\ge2\sqrt{b^2.\frac{1}{4}}=b\) ; \(c^2+1\ge2\sqrt{c^2.1}=2c\)

Cộng các bđt trên theo vế được \(a^2+b^2+c^2+\frac{21}{4}\ge4b+b+2c\) (đpcm)

8 tháng 9 2016

e ms lp 7 thoy ạ...bài này e chả hỉu j heets~~hic hic^^