Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau
Dễ mà
Ta có ƯC( 2n+1 và 3n+1) là d
=> 2n+1 và 3n+1 chia hết cho d
=> 3(2n+1) chia hết cho d
=> 2(3n+1) chia hết cho d
=> 6n+3và 6n+2 chia hết cho d
=> 6n+3 - 6n+2 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯC( 2n+1 và 3n+1)=1
=> đpcm
bài này rất hóc búa!
vào câu hỏi tương tự nha!
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
a)Ta có: n+1 và 3n +4
Gọi d là ƯCLN ( n+1;3n+4)
Ta có n+1 chia hết cho d và 3n+4 cũng chia hết cho d.
(3n+4)-(3n+3) = 1 chia hết cho d
Vậy hai số n+1 và 3n+4 là hai số nguyên rố cùng nhau.
b) Ta có: 2n+5 và 3n+7
Gọi d là ƯCLN(2n+5;3n+7)
Ta có 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d
( 6n+15) - (6n +14) = 1 chia hết cho d
Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.
Gọi d là ước chung của 2n+1 và 3n+1
\(\Rightarrow2n+1⋮d,3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.
Đặt ƯCLN (2n+1, 3n+1) là d
Ta có: \(2n+1⋮d\Rightarrow6n+3⋮d\) (1)
\(3n+1⋮d\Rightarrow6n+2⋮d\) (2)
Lấy (1) trừ (2), có: \(\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\)hay \(d\inƯ\left(1\right)\).....
Vậy.....