K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

Ta có:      2 + 2+ 23 + 24 + ... + 260

=    ( 2 + 2+ 23 + 24) + ( 25+ 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)

=  2 ( 1 + 2 + 22 + 23) + 25( 1 + 2 + 22 + 23) + ... + 257( 1 + 2 + 22 + 23)

= 2 . 15 + 25.15 + ... +  257 . 15 = 15 ( 2 + 25 + ... + 257) chia hết cho 3.

Nhớ tick mình đúng nhé!

17 tháng 12 2015

2+22+23+...+260

=(2+22)+(23+24)+...+(259+260)

=2(1+2)+23.(1+2)+...+259(1+2)

=2.3+23.3+...+259.3

=3(2+23+...+259) chia hết cho 3 

=>2+22+23+24+...........+259+260 chia hết cho 3

28 tháng 9 2017

Bạn ơi, sao 23 + 25 mà lại tới 260?

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(=5+4^2.5+...+4^{58}.5\)

\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)

\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(=21+4^3.21+...+4^{57}.21\)

\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)

\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)

\(=85+...+4^{56}.85\)

\(=85.\left(1+...+4^{56}\right)\)

12 tháng 10 2015

a) A = 2 + 22 + ... + 260

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )

A = 2(1+2) + 23(1+2) + ... + 259(1+2)

A = 3.(2+23+...+259) chia hết cho 3


b) A = 2 + 22 + ... + 260

A = ( 2 + 22 + 23 + 2) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )

A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 257(1+2+22+23)

A = 15.(2+25+...+257) chia hết cho 15

29 tháng 11 2016

Ta có: A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

=2x(1+2+2^2)+2^4x(1+2+2^2)+...+2^58x(1+2+2^2)

=2x7+2^4x7+..+2^58x7

=7x(2+2^4+..+2^58)

Vì A=7x(2+2^4+..+2^58) nên A chia hết cho 7

17 tháng 11 2018

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{58}.6\)

\(A=6\left(1+2^2+...+2^{58}\right)\)

Vì \(6\left(1+2^2+...+2^{58}\right)⋮6\Rightarrow A⋮6\left(đpcm\right)\)

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

\(A=2^1+2^2+2^3+...+2^{60}\)

\(=\left(2^1+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=\left(2.1+2.2+2.2^2\right)+...+\left(2^{58}.1+2^{58}.2+2^{58}.2^2\right)\)

\(=2.\left(1+2+4\right)+...+2^{58}.\left(1+2+4\right)\)

\(=2.7+...+2^{58}.7\)

\(=\left(2+2^{58}\right).7⋮7\)hay \(A⋮7\)

1 tháng 2 2017

A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

A=2.(1+2+2^2)+...+2^58(1+2+2^2)

A=2.7+...+2^58.7

A=7(2+2^4+....+2^58) chia hết cho 7

vậy...

13 tháng 11 2015

A =  2 + 2+ 23 + 24 + ... + 258 + 259 + 260

A = (2 + 2+ 23 + 24) + ... + (257 +  258 + 259 + 260)

A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 +  257.2 + 257.2.2 + 257.2.2.2)

A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)

A = 2.15 + ... + 257.15

A = 15.(2 + 25 + ... + 257) chia hết cho 15

=> A chia hết cho 15

 

26 tháng 9 2016

làm đến bước chia hết cho 15 của khoi ly truong thì bạn làm tiếp là:

do A chia hết cho 15 => A chia hết cho 5 và 3

13 tháng 2 2016

ủng hộ mình lên 320 điểm hỏi đáp đi

13 tháng 2 2016

A = ( 21 + 2+ 2) + (24 + 25 + 26 ) + .... + ( 258 + 259 + 260 )

A = 14 + 24 . ( 21 + 22 + 23 ) + ... + 258 . ( 2+ 22 + 23 )

A = 14 + 24 . 14 + ... + 258 . 14

A = 14 . ( 1 + 24 + ... + 258 )

mà 14 chia hết cho 7 nên A chia hết cho 7

18 tháng 2 2017

chiu moi hoc lop 5