K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

Sửa đề:

Chứng minh 2 + 2² + 2³ + 2⁴ + ... + 2²⁰ chia hết cho 3 và 5

Đặt A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2¹⁹ + 2²⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2¹⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2¹⁹.3

= 3.(2 + 2³ + ... + 2¹⁹) ⋮ 3

Vậy A ⋮ 3 (1)

A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁹.30

= 30.(1 + 2⁴ + ... + 2¹⁹)

= 5.6.(1 + 2⁴ + ... + 2¹⁹) ⋮ 5

Vậy A ⋮ 5 (2)

Từ (1) và (2) ⇒ A chia hết cho 3 và 5

 

31 tháng 10 2023

Bạn ghi lại đề đi bạn

12 tháng 10 2017

Ta có:

2120 - 117 = (...1) - (...1) = (...0)

Vì (...0) chia hết cho 2 và 5 => 2120 - 117 chia hết cho 2 và 5.

12 tháng 10 2017

Thank bạn nhiều

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

5 tháng 11 2020

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

DT
5 tháng 10 2023

A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^17 + 2^18 + 2^19 + 2^20

= 30 + ... + 2^16(2+2^2+2^3+2^4)

= 30 + ... + 2^16.  30

= 30.(1+...+2^16) CHIA HẾT CHO 30

=> A chia hết cho cả 5 và 6

5 tháng 10 2023

\(A=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ =30+2^4.30+...+2^{16}.30\\ =30.\left(1+2^4+...+2^{16}\right)=6.5.\left(1+2^4+...+2^{16}\right)⋮6;⋮5\left(đpcm\right)\)

11 tháng 6 2016

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

11 tháng 6 2016

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

2 tháng 9 2017

a)Vì 105 chia hết cho 5 và 5 chia hết cho 5 nên 105 + 5 chia hết cho 5. 

Ta có: 5 chia 3 dư 2, 105 chia 3 dư 1 ( vì có tổng các chữ số là 1 ) nên 105 +  5 chia hết cho 3.

b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên 1050 + 44 chia hết cho 2.

Vì 44 chia 9 dư 8 và 1050 chia 9 dư 1 ( vì có tổng các chữ số bằng 1 ) nên 1050+44 chia hết cho 9.

c) n x ( n + 1 ) x ( n + 5 ).

Nếu n chia hết cho 3 thì tích trên chia hết cho 3.

Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => tích trên chia hết cho 3.

Nếu n chia 3 dư 1 thì n + 5 chia hết cho 3=> tích trên chia hết cho 3.

Vậy ta có n x ( n + 1 ) x ( n + 5 ) luôn chia hết cho 3 với mọi n thuộc N.

2 tháng 9 2017

105+5=100005

số trên có tận cùng là 5 nên chia hết cho 5

có tổng các chữ số là 6 nên chia hết cho 3

còn lại chịu tui học dốt lắm!!!

23 tháng 8 2017

~  là trừ

23 tháng 8 2017

Tớ làm phần b trước nha ! 

         Ta có : abcabc = abc000 + abc

                                  = abc x 1000 + abc

                                   = abc x ( 1000 + 1 )

                                   = abc x 1001

                                   = abc x 7 x 11 x 13 

Vậy abcabc chia hết cho 7 ; 11 và 13

14 tháng 12 2017

a) P = 1 + 2 + 22+23+24+25+26+27+...+299

   P = (1+2) + (22+23)+(24+25)+(26+27)+...+(298+299)

   P = 3 + 22(1+2) + 24(1+2) + 26(1+2)+...+298(1+2)

   P = 3 + 22.3+24.3+26.3+...+298.3

   P = 3(1+22+24+26+...+298\(\Rightarrow P⋮13\)

b) Ta có : ab = ƯCLN(a;b).BCNN(a;b)=2940

ab = ƯCLN(a;b) .210 = 2940

=> ƯCLN(a;b) =2940 : 210 = 14

=>ƯCLN (\(\frac{a}{14};\frac{b}{14}\)) = 1

=> BCNN (\(\frac{a}{14};\frac{b}{14}\) )=15

Ta có bảng :

\(\frac{a}{14}\)13
\(\frac{b}{14}\)155
\(a\)1442
\(b\)21070

Vậy (a;b) \(\in\){(14;210);(42;70)}

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)