Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(21^{30}+39^{21}=\left(21^2\right)^{15}+\left(39^2\right)^{10}.39\)
\(=\left(9.45+36\right)^{15}+\left(33.45+36\right)^{20}.39\)
\(=BS45+36^{15}+BS45+36^{20}.39\)
\(=BS45+36^{15}\left(36^5+19\right)\)
Mà \(36^5+19⋮45\) nên
\(BS45+36^{15}\left(36^5+19\right)=BS45+36^{15}.45a=BS45⋮45\)(đpcm)
\(A=21^{30}+39^{21}\)
Ta thấy 2130 có tận cùng là 1; 3921 có tận cùng là 9.
Vậy nên A có tận cùng là 0 hay A chia hết cho 5.
Lại có \(A=21^{30}+39^{21}=3^{30}.7^{30}+3^{21}.13^{21}=9\left(3^{28}.7^{30}+3^{19}.13^{21}\right)\) nên A chia hết cho 9.
Ta có (5;9) = 1 nên A chia hết cho 45.
Ta có:
\(21^{39}+39^{21}=\left(21^{39}-1\right)+\left(39^{21}+1\right)\)
Vì \(21^{39}-1=20\left(21^{38}+21^{37}+...+1\right)\) chia hết cho \(20\) và \(39^{21}+1=40\left(39^{20}-39^{19}+...+1\right)\) chia hết cho \(20\)
Do đó, \(\left(21^{39}-1\right)+\left(39^{21}+1\right)\) chia hết cho \(20\) hay \(21^{39}+39^{21}\) chia hết cho \(20\) \(\left(\text{*}\right)\)
Mặt khác, ta cũng có \(21^{39}+39^{21}=\left(21^{39}-3^{39}\right)+\left(39^{21}-3^{21}\right)+\left(3^{39}+3^{21}\right)\)
Do \(21^{39}-3^{39}=18\left(21^{38}+...+3^{38}\right)\) chia hết cho \(9\) \(\left(1\right)\)
\(39^{21}-3^{21}=36\left(39^{20}+...+3^{20}\right)\) chia hết cho \(9\) \(\left(2\right)\)
và \(3^{39}+3^{21}=3^{21}\left(3^{18}+1\right)=3\left(3^2\right)^{10}\left(3^{18}+1\right)\) chia hết cho \(9\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , suy ra \(21^{39}+39^{21}\) chia hết cho \(9\) \(\left(\text{*}\text{*}\right)\)
Lại có: \(\left(20;9\right)=1\) \(\left(\text{*}\text{*}\text{*}\right)\)
Từ \(\left(\text{*}\right);\) \(\left(\text{*}\text{*}\right)\) và \(\left(\text{*}\text{*}\text{*}\right)\) suy ra \(21^{39}+39^{21}\) chia hết cho \(20.9=180\)
\(27^3+5^3=\left(27+5\right)\left(27^2-27.5+5^2\right)\)(hằng đăng thức số 6)
\(=32.\left(27^2-27.5+5^2\right)\)
Vì 32 chia hết cho 4 nên \(\left(27^3+5^3\right)⋮4\)
Bài này dễ mà. Chúc bạn học tốt.
mik chưa học hằng đẳng thức bạn làm cách thông thường dc ko ?
ta có \(21⋮3\Rightarrow21^{39}⋮9;39⋮3\Rightarrow39^{21}⋮9\Rightarrow21^{39}+39^{21}⋮9\) (1)
Mà \(21\equiv1\left(mod5\right)\Rightarrow21^{39}\equiv1\left(mod5\right);39\equiv-1\left(mod5\right)\Rightarrow39^{21}\equiv-1\left(mod5\right)\)
=>\(21^{39}+39^{21}\equiv0\left(mod5\right)\Rightarrow21^{39}+39^{21}⋮5\) (2)
Từ (1) và (2) =>\(21^{39}+39^{21}⋮45\left(ĐPCM\right)\)
^_^
dựa vào bài của mình nhé pham ba hoang
\(\text{Ta có :}21⋮3\Rightarrow21^{30}⋮9\text{ và }39⋮3\Rightarrow39^{21}⋮9\)
\(\Rightarrow21^{30}+39^{21}\text{c 9}(1)\)
\(\text{Ta có :}21^{30}\equiv1^{30}\equiv1(\text{mod 5})\text{ và }39^{21}\equiv(-1)^{21}=-1(\text{mod 5})\)
\(\Rightarrow21^{30}+39^{21}\equiv1+(-1)=0(\text{mod 5})\text{ hay }21^{30}+39^{21}⋮5\)
\(\text{Lại có :}(9;5)=1\text{ nên từ}(1)\text{ và }(2)\Rightarrow21^{30}+39^{21}⋮45\)