K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2023

Ta đặt:

\(A=1^n+2^n+3^n+4^n\)

Nếu n là số lẻ thì \(1^n+4^n⋮5;2^n+3^n⋮5\) 

Nên \(A⋮5\) 

Nếu n = 4K + 2 \(\left(k\in N\right)\) thì

\(A=1+2^{4K+2}+3^{4K+2}+4^{4K+2}=\left(1+4^{2K+1}\right)+\left(9^{2K+1}+16^{2K+1}\right)⋮5\)

Nếu n = 4K \(\left(K\in N\right)\) thì

\(A=1+2^{4K}+3^{4K}+4^{4K}=1+16^K+81^K+256^K\)

Có chữ số tận cùng là 4, không chia hết cho 5

\(\Rightarrow1^n+2^n+3^n+4^n⋮5\) khi \(n⋮̸4\left(đpcm\right)\)

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

18 tháng 11 2020

\(n^2+n+1=n^2+n+1=n\left(n+1\right)+1\text{ mà }n\left(n+1\right)⋮2\)

nên n(n+1)+1 lẻ nên ko chia hết cho 4

\(\text{Ta chứng minh: }n^2+n\text{ ko chia 5 dư 4};n\text{ chia 5 dư 0 thì đúng ; 1 cx đúng;...}\)

nên n^2+n+1 ko chia 5 dư 4+1=5 hay 0 nên

có đpcm

31 tháng 5 2017

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên \(⋮\)2 \(\Rightarrow\)n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

31 tháng 5 2017

Giả sử n chia hết cho 5 

=> n có dạng 5k

=> n2 + n + 1 = 25k+ 5k + 1 = 5k( 5k + 1 ) + 1

Ta có : 5k( 5k + 1 ) chia hết cho 5 mà 1 không chia hết cho 5

=> 25k2 + 5k + 1 không chia hết cho 5 ( đpcm )

27 tháng 7 2015

Ta có n2 + n = n.(n + 1) là tích của hai số tự nhiên liên tiếp nên có tận cùng là 0; 2; 6.

Do đó n2 + n + 1 có tận cùng là 1; 3; 7.

- chữ số tận cùng là số lẻ => không chia hết cho 4.

- chữ số tận cùng khác 0 hoặc 5 => không chia hết cho 5.

Vậy  n2 + n + 1 không chia hết cho 4 và không chia hết cho 5

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4