K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 7 2021

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

29 tháng 2 2016

a,Gọi d=(14n+3;21n+5)

=>14n+3 (2)  và 21n+5 chia hết cho d 

=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)

Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1

+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm

b, Gọi d=(16n+5;24n+7)

=> 16n+5 (4)  và 24n+7 chia hết cho d

=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)

Từ (3) và (4) => d=1

4 tháng 3 2022

-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).

-Có: \(\left(14n+3\right)⋮a\)

\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)

\(\Rightarrow\left(42n+9\right)⋮a\) (1)

-Có: \(\left(21n+4\right)⋮a\)

\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)

\(\Rightarrow\left(48n+8\right)⋮a\) (2)

-Từ (1) và (2) suy ra:

\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\in\left\{1;-1\right\}\)

-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.

7 tháng 5 2015

Gọi d là ucln(14n+17 và21n+25 )

hay 14n+17 và21n+25chia hết d

      3(14n+17)và 2(21n+25)

      hay42n+51  chia hết d(1)

           42n+50 chia hết d(2)

     từ 1 và 2 =>42n+51- 42n+50 chia hết d

=>1 chia hết d

=>d=1

đúng cái 

7 tháng 5 2015

gọi ƯCLN ( 14n +17: 21n + 25) là d

ta có : 14n + 17 chia hết d = 7+ ( 14n + 17) = 21n + 24 chia hết cho d

21n +25 chia hết d = 0 + (21n +25) = 21n +25 chia hết cho d

=> 21n + 25 - 21n -24 chia hết cho d

 => 1 chia hết cho d

=> d=1  

vậy ƯCLN (14n +17 ; 21n + 25) =1

=> PS TRÊN LÀ PHÂN SỐ TỐI GIẢN

 

12 tháng 1 2022

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

1 tháng 1 2017

dạ em chào anh ghi cái gì mà tui ko hỉu gì hết

24 tháng 8 2015

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

27 tháng 1 2017

Khó nhỉ

20 tháng 5 2016

gọi d là UCLN (21n+4;14n+3)

ta có:

[3(14n+3]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản vs mọi n

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản