Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+\frac{21}{4}=\left(a^2+4\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+1\right)\)
Mà theo bđt Cauchy : \(a^2+4\ge2\sqrt{4a^2}=4a\) ; \(b^2+\frac{1}{4}\ge2\sqrt{b^2.\frac{1}{4}}=b\) ; \(c^2+1\ge2\sqrt{c^2.1}=2c\)
Cộng các bđt trên theo vế được \(a^2+b^2+c^2+\frac{21}{4}\ge4b+b+2c\) (đpcm)
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~
a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)
\(=\left(a+1\right)^2+b^2\)
Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)
\(\left(a+1\right)^2+b^2\ge0\)
b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)
Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)
c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)
\(=x^2-8x+16+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+1\ge1\)
Vậy (x-3)(x-5) + 2 > 0 ∀ x R
Bài 1:
Ta có: (2a-2b)2 lớn hơn hặc bằng 0
<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0
<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0
<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b
<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2
<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]
3)
\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ