K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ra xét các trường hợp của n đi rồi thử

3 tháng 10 2016

Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)

hay \(n^2< n^2+n+1< \left(n+1\right)^2\)

Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa  hai số ấy nên không thể là số chính phương.

29 tháng 8 2020

 Với n nguyên dương thì 

n2 < n2 + n < n2 + 2n

<=> n2 < n2 + n + 1 < n2 + 2n + 1

<=> n2 < n2 + n + 1 < ( n + 1 )2

Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )

7 tháng 8 2017

Vì n nguyên dương nên ta có:

n2 < n+n+1 < n2 + 2n+1 hay n2 < n+n+1 < (n+1)2

Mà n và (n+1) là hai số chính phương liên tiếp và n2+n+1 là số kẹp giữa hai số đó nên không thể là số chính phương 

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x