Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
> \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)
Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)
Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
CMR:\(\frac{1}{200}< A< \frac{1}{99}\)
+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)
\(\frac{1}{101.101}>\frac{1}{101.102}\)
.............................................
\(\frac{1}{198.198}>\frac{1}{198.199}\)
\(\frac{1}{199.199}>\frac{1}{199.200}\)
=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)
=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)
=>A>\(\frac{1}{200}\)(1)
+)Ta lại có:
A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\frac{1}{101.101}< \frac{1}{100.101}\)
................................................
\(\frac{1}{198.198}< \frac{1}{197.198}\)
\(\frac{1}{199.199}< \frac{1}{198.199}\)
=>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)
=>A<\(\frac{1}{99}-\frac{1}{199}\)
Mà A<\(\frac{1}{99}-\frac{1}{199}\)
=>A<\(\frac{1}{99}\)(2)
+)Từ (1) và (2)
=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)
Vậy \(\frac{1}{200}< A< \frac{1}{99}\)
Chúc bn học tốt
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
B=1/2+(1/2)^2+................+(1/2)^100
=>1/2B=(1/2)^2+(1/2)^3+............+(1/2)^101
=>1/2B-B=(1/2^2+..............+1/2^101)-(1/2+..............+1/2^100)
=>1/2B-B=1/2^2+..............+1/2^101-1/2-..............-1/2^100
=>1/2B-B=1/2^101+(1/2^2-1/2^2)+................+(1/2^100-1/2^100)-1/2
=>1/2B-B=1/2^101+0+............+0-1/2
=>-1/2B=1/2^101-1/2
=>B=1/2^101-1/2
__________
-1/2
=>B<1
Suy ra xA=x+x^2+x^3+...+x^101
xA-A=x^101-1
A(x-1)=x^101-1
A=(x^101-1)/(x-1)
\(A=1+x+x^2+...+x^{99}+x^{100}\Rightarrow x.A=x+x^2+x^3+...+x^{100}+x^{101}\)
\(\Rightarrow x.A-A=\left(x+x^2+x^3+...+x^{100}+x^{101}\right)-\left(1+x+x^2+...+x^{99}+x^{100}\right)\)
\(\Rightarrow\left(x-1\right).A=x^{101}-1\Rightarrow A=\frac{x^{101}-1}{x-1}\) (đpcm)
1. 2100+2101+2102=2100+2100.2+2100.22=2100(1+2+22)=2100.7 chia hét cho 7
=> 2100+2101+2102 chia hết cho 7
2. 165+215=220+215=215+215.25=215.(1+25)=215.33 chia hết cho 33
=> 165+215 chiaheets cho 33
321>231
321 > 231