Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chứng minh được bài toán tổng quát sau
2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]
Áp dụng:
ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20
= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380
=> A = 189/ 760 < 1/4
Nhận thấy: 1�⋅(�+1)⋅(�+2)=22⋅�⋅(�+1)⋅(�+2)=2+�−�2�⋅(�+1)⋅(�+2)=12⋅[2+�−��⋅(�+1)⋅(�+2)]=12⋅[2+��⋅(�+1)⋅(�+2)−��⋅(�+1)⋅(�+2)]=12⋅[1�⋅(�+1)−1(�+1)⋅(�+2)]n⋅(n+1)⋅(n+2)1=2⋅n⋅(n+1)⋅(n+2)2=2n⋅(n+1)⋅(n+2)2+n−n=21⋅[n⋅(n+1)⋅(n+2)2+n−n]=21⋅[n⋅(n+1)⋅(n+2)2+n−n⋅(n+1)⋅(n+2)n]=21⋅[n⋅(n+1)1−(n+1)⋅(n+2)1]
⇒�=11⋅2⋅3+12⋅3⋅4+...+118⋅19⋅20=12⋅[11⋅2−12⋅3+12⋅3−13⋅4+...+118⋅19−119⋅20]=12⋅[11⋅2−119⋅20]=14−1760<14⇒A=1⋅2⋅31+2⋅3⋅41+...+18⋅19⋅201=21⋅[1⋅21−2⋅31+2⋅31−3⋅41+...+18⋅191−19⋅201]=21⋅[1⋅21−19⋅201]=41−7601<41
Vậy �<14A<41
Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)
\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)
Vậy \(A< \dfrac{1}{4}\)
Ta có:
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{10.11}-\dfrac{1}{11.12}=\dfrac{1}{1.2}-\dfrac{1}{11.12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)Mà \(\dfrac{65}{132}\ne\dfrac{1}{4}\Rightarrow\) Có thể bạn ghi sai đề thì phải !
Cho \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}.\)
Chứng minh rằng:\(B< \frac{1}{4}.\)
2B=\(\frac{2}{1.2.3}\)+.....+\(\frac{2}{18.19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\).......+\(\frac{1}{18.19}\)-\(\frac{1}{19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{19.20}\)
B=\(\frac{1}{1.2}\):2-\(\frac{1}{19.20}\):2
B=\(\frac{1}{1.2}\).\(\frac{1}{2}\)-\(\frac{1}{19.20}\).\(\frac{1}{2}\)
=\(\frac{1}{4}\)-\(\frac{1}{19.20.2}\)<\(\frac{1}{4}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{19.20}\)
\(B=\left(\frac{1}{2}-\frac{1}{19.20}\right):2\)
\(B=\frac{189}{760}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}< \frac{1}{2}\)
\(2S< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{4}\) (ĐPCM)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{4}-\frac{1}{760}\)
=> S < \(\frac{1}{4}\)( vì 1/4 > 0)
a chứng minh được bài toán tổng quát sau
2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]
Áp dụng:
ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20
= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380
=> A = 189/ 760 < 1/4
Gọi biểu thức trên là A
Công thức: ( . là nhân nha bạn)
2n/a.(a+n).(a+2n)=1/a.(a+n)-1/(a+n).(a+2n)
2A=2/1.2.3+2/2.3.4+2/3.4.5+......+2/18.19.20
=1/1.2-1/2.3+1/2.3-1/3.4+.......+1/18.19-1/19.20
=1/1.2-1/19.20
=1/760
=>A=1/760:2
A=1/1520
Mà 1/1520<1/4
=>1/1.2.3+1/2.3.4+1/3.4.5+......+1/18.19.20<1/4
Vì khi so sánh 2 phân số cùng tử thì phân số nào có mẫu lớn hơn thì phân số đó bé hơn và phân số nào có mẫu bé hơn thì phân số đó lớn hơn.