Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 90 số hạng nên ghép từng cặp 2 số ta có
A= (2+2^2)+(2^3+2^4)...+(2^89+2^90)
= 2x(1+2)+2^3(1+2)+...+2^89(1+2)
= 2.3+2^2.3+...+2^89.3 chia hết cho 3
+,ghép từng cặp 3 số
A= (2+2^2+2^3)+....+(2^88+2^89+2^90)
= 2x(1+2+2^2)+....+2^88(1+2+2^2)
= 2.7+....+2^88.7 chia hết cho 7
mà (3;7)=1 => A chia hết cho 3x7=21
Vậy A chia hết cho 21.
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
A = (3+ 3^2 +3^3)+ (3^4 + 3^5+ 3^6)+(3^7+ 3^8 + 3^9)
= 39 + 3^3 (3+ 3^2+ 3^3) + 3^6(3+ 3^2+ 3^3)
= 39 + 3^3 .39 +3^6 .39
Vì 39 chia hết cho 13 nên A chia hết cho 13
\(10^{2016}+8=1000....000+8\) ( có 2016 số 0 ) \(=1000....008\)
Có \(1+0+0+...+0+0+8=9⋮9\) => \(10^{2016}+8⋮9\)
\(1000....008\) có 008 chia hết cho 8 => \(10^{2016}+8⋮8\)
Mà \(\left(8;9\right)=1\) => \(10^{2016}+8⋮72\) (đpcm)
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
S=31+32+33+34+....+32012
=3x1+3x3+3x9+3x27 +......+32009x1+32009x3+32009x9 +32009x27
=3x(1+3+9+27)+35x(1+3+9+27)+....+32009x(1+3+9+27)
=3x40+35x40+....+32009x40
=>S\(⋮\)40
S = 3 + 32 + 33 + 34 +...+ 32012 ( có 2012 số hạng)
S = ( 3 + 32 + 33 + 34) + ...+ ( 32009 + 32010 + 32011 + 32012) ( có 503 nhóm số hạng)
S = 3.(1+3+32 + 33) + ...+ 32009.(1+3+32 +33)
S = 3.40 +...+ 32009.40
S = 40.(3+...+32009) chia hết cho 40
A = 4 + 42 + 43 + 44 + ... + 460 (có 60 số; 60 chia hết cho 2)
A = (4 + 42) + (43 + 44) + ... + (459 + 460)
A = 4.(1 + 4) + 43.(1 + 4) + ... + 459.(1 + 4)
A = 4.5 + 43.5 + ... + 459.5
A = 5.(4 + 43 + ... + 459) chia hết cho 5
a) 810 - 89 - 88 = 88(82-8-1) = 88.55 chia hết cho 55
b) 2454.5424.210
= (23.3)54.(33.2)24.210
= (23)54.354.(33)24.224.210
= 2162.354.372.224.210
= 2196.3126
Mà 7263 = (23.32)63=(23)63.(32)63 = 2189.3126
Lại có: 2196.3126 chia hết cho 2189.3126
=> 2454.5424.210 chia hết cho 7263
c) 210 + 211 + 212 = 210(1+2+4) = 210.7 :7 = 210
=> (210 + 211 + 212):7 là 1 số tự nhiên