Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (a + b)2 - (a - b)2 = 4ab
VT = (a + b) ² - ( a - b ) ² = ( a² + 2ab + b²) - (a² - 2ab + b² ) = a² + 2ab + b² - a² + 2ab - b² = 4ab = VP (đpcm)
2) (a + b) ² + (a - b)² = 2(a² + b² )
VT = (a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b² = 2a² + 2b² = 2 (a² + b²) = VP (đpcm)
3) (a + b)² - 4ab = (a - b)²
VT = (a + b)² - 4ab = a² + 2ab + b² - 4ab = a² - 2ab + b² = (a - b)² = VP (đpcm)
4) (a - b)² + 4ab = (a + b)²
VT = (a - b)² + 4ab = a² - 2ab + b² + 4ab = a² + 2ab + b² = (a + b)² = VP (đpcm)
5) a3 + b3 = (a + b)3 - 3ab (a + b)
VP = (a + b)3 - 3ab (a + b) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3+ b3 = VT (đpcm)
6) a3 - b3 = (a - b)3 + 3ab (a - b)
VP = (a - b)3 + 3ab (a - b) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3- b3 = VT (đpcm)
7) a3 + b3 + c3 - 3abc = ( a + b + c) ( a² + b² + c² - ab - bc - ac )
VP = (a + b + c) (a2 + b2 + c2 - ab - bc - ac)
= a3 + ab² + ac² - a²b - abc - a²c + a²b + b3 + bc² - ab² - b²c - abc + a²c + b²c + c3 - abc - bc² - ac²
= a3 + b3 + c3 - 3abc = VT (đpcm)
câu 7 mk sửa đề lại xíu nhea !!!
có j sai xót mong m.n bỏ qa cho ☺♥
Ta có: (a-1)2+(b-1)2+(c-1)2>0
<=>a2-2a+1+b2-2b+1+c2-2c+1>0
<=>a2+b2+c2+3-2(a+b+c)>0
<=>a2+b2+c2+3>2(a+b+c)
chúc bn học giỏi, đừng quên k mình nhé!!!
a) VP= (a-b)^2 + 4ab
= a^2 - 2ab + b^2 + 4ab
= a^2 + 2ab + b^2
= (a+b)^2 = VT
Vậy ...
b) VP= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VT
Vậy....
c) VP= (a+b)^3 - 3ab (a+b)
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2
= a^3 + b^3 = VT
Vậy ....
a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
Vậy: (a+b)2 = (a-b)2 + 4ab.
b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy: (a-b)2 = (a+b)2 - 4ab
c) Ta có: \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)
Đúng nha!!
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(a.\) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2+2ab-2ab=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+2ab+b^2-4ab\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(a-b\right)^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Tương tự mấy câu kia
b: \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)
c: \(x^4+y^4-2\left(x^2+xy+y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2-2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=-\left(x^2+y^2\right)^2-4x^2y^2-4xy\left(x^2+y^2\right)\)
\(=-\left(x^2+2xy+y^2\right)^2=-\left(x+y\right)^4\)
=>\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
a) (a+b)2 = (a-b)2 +4ab
⇔ (a+b)2 = a2 - 2ab + b2 +4ab
⇔ (a+b)2 = a2 + 2ab + b2
⇔ (a+b)2 = (a+b)2
⇒ (a+b)2 = (a-b)2 +4ab (dpcm)
b) (a-b)2 = (a+b)2 - 4ab
⇔ (a-b)2 = a2 + 2ab + b2 - 4ab
⇔ (a-b)2 = a2 - 2ab + b2
⇔ (a-b)2 = (a-b)2
⇒ (a-b)2 = (a+b)2 - 4ab (dpcm)
a) (a2 +2ab +b2)-(a2-2ab+b2)= a^2+2ab+b^2-a^2+2ab-b^2=2ab+2ab=4ab
b) \(a^2+2ab+b^2+a^2-2ab+b^2=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)
c)\(a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)