Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử
\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp
\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)
Đề 1:
\(A=2+2^2+2^3+.....+2^{50}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{49}+2^{50}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{49}.\left(1+2\right)\)
\(A=2.3+2^3.3+.....+2^{49}.3\)
\(A=3.\left(2+2^3+.....+2^{49}\right)\)
\(\Leftrightarrow A⋮3\)
Vậy \(A⋮3\)
Đề 2:
Vì p là số nguyên tố lớn hơn 3
\(\Rightarrow\)p lẻ
\(\Rightarrow\)\(p^2lẻ\)
\(\Rightarrow p^2+2003\)là một số chẵn
mà p > 3
\(\Rightarrow\)\(p^2>3\)
\(\Rightarrow p^2+2003>3\)
\(\Rightarrow p^2+2003\)là hợp số.
Nhớ k cho mình nhé! Thank you!!!
\(A=2+2^2+2^3+...+2^{98}+2^{99}+2^{100}\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{97}.\left(1+2\right)+2^{99}.\left(1+2\right)\)
\(\Rightarrow A⋮3\)
Vì (2x+1)(5-y)=6
Suy ra (2x+1)=1;2;3;6;-1;-2;-3;-6 và (5-y) là ngược lại.
2x+1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
5-y | 6 | 3 | 2 | 1 | -6 | -3 | -2 | -1 |
x | 0 | Rỗng | 1 | Rỗng | -1 | Rỗng | -2 | Rỗng |
y | -1 | 2 | 3 | 4 | 11 | 8 | 7 | 6 |
Ta tìm được các cặp số x,y thỏa mãn:
x=0,y=-1. x=-1,y=11
x=1,y=3. x=-2,y=7
Vậy có 4 cặp số x,y thỏa mãn đề bài.
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.
Nếu n là số lẻ thì
n2 chia 8 dư 1
4n chia 8 dư 4
5 chia 8 dư 5
=> (1 + 4 + 5) không chia hết cho 8
=>n2 + 4n + 5 không chia hết cho 8 với n là số lẻ
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
Ta có :
E = 62 + 63 + 64 + ... + 661
=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )
=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )
=> E = 252 + 62 . 252 + ... + 658 . 252
=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36
=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7
Ta có :
E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )
=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )
=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )
=> E = 1548 + 63 . 1548 + ... + 657 . 1548
=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43
=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43
Đáng nhẽ đê như vầy:
A= 2 + 22 + 23 + 24 + ..... + 22015
=> A = (2 + 23) + ( 22 + 24 ) + ..... + ( 22012 + 22014) + (22013 + 22015)
<=> A = 2.( 1 + 4 ) + 22. ( 1 + 4) + ...... + 22012.(1 + 4) + 22013.(1 + 4)
=> A = 2.5 + 22. 5 + ...... + 22012.5 + 22013.5
=> A = 5. ( 2 + 22 + 23 + .... + 22013) chai hết cho 5
2+22+23+24+....+220
S=(2+22+23+24)+24x(2+22+23+24)+....+216x(2+22+23+24)
S=30+24x30+....+216x30
M=30x(1+24+.....+216)
mà 30 chia hết cho 5
=>30x(1+24+......+216) chia hết cho 5
=>M chia hết cho 5
Đ/S : 30
Bạn Đàm Quỳnh Chi làm tuy nhanh nhưng sai rồi nhé! Bạn tự biết nhé! Thanks