Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 x>y
Ta có (xy+1)2=x^2.y^2+2xy+1>x2y2+x−y>x^2.y^2
Do đó loại vì x^2.y^2 làSCP.
TH2 x<y cm tương tự, loại.
Do đó x=y.
\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)
Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2
\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2
Vậy pt có nghiệm (x;y)=(6;0)
2y+3=x2
Với y=0 suy ra 20+3=x2 suy ra 4 = x2
suy ra x=2 ( vì x thuộc N)
Với y>0 suy ra VP = 2y+3 luôn là số lẻ
nên 2y+3 khác x2
vậy y=0,x=2
Để \(\frac{1}{x}+\frac{2}{y}\in Z\)
\(\Rightarrow x\in\left(1;-1\right);y\in\left(2;-2\right)\)
Do \(x;y\inℕ^∗\)
\(\Rightarrow x=1;y=2\)
giúp. Mk đang cần gấp<=> x2 + 2x2y2 + 2y2 - x2y2 + 2x2 - 2 = 0
<=> -x2 + x2y2 + 2y2 - 2 = 0
<=> x2 (y2 - 1) + 2 (y2 - 1) = 0
<=> (x2 + 2)(y2 - 1) = 0
Vì x2 ≥0 với mọi x => y2 - 1 = 0 <=> y = -1 và y = 1.
Vậy x ∈R , y = {-1;1}