Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^4+2x^2+25}{4x^2}=\frac{x^4+25}{4x^2}+\frac{2x^2}{4x^2}=\frac{x^4+25}{4x^2}+\frac{1}{2}\)
vì \(x^4>=0;25>0\Rightarrow\frac{x^4+25}{4x^2}+\frac{1}{2}>=\frac{2\sqrt{25\cdot x^4}}{4x^2}+\frac{1}{2}=\frac{10x^2}{4x^2}+\frac{1}{2}=\frac{5}{2}+\frac{1}{2}=3\)(bđt cosi)
dấu = xảy ra khi \(x^4=25\Rightarrow x^2=5\Rightarrow x=+-\sqrt{5}\)
vậy min của A là 3 khi x= \(+-\sqrt{5}\)
Câu 2:
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2-2\left(m-3\right)\)
\(=4m^2-10m+10=4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(\Rightarrow P_{min}=\frac{15}{4}\) khi \(m=\frac{5}{4}\)
Câu 1:
Để pt có 2 nghiệm \(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{2\left(m-2\right)}{m}\\x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\frac{4\left(m-2\right)^2}{m^2}-\frac{2\left(m-3\right)}{m}=\frac{4m^2-8m+4}{m^2}-\frac{2m-6}{m}\)
\(=4-\frac{8}{m}+\frac{4}{m^2}-2+\frac{6}{m}=\frac{4}{m^2}-\frac{2}{m}+2\)
\(=4\left(\frac{1}{m}-\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(A_{min}=\frac{7}{4}\) khi \(\frac{1}{m}=\frac{1}{4}\Leftrightarrow m=4\)
Ta có \(\Delta'=b'^2-ac=\left(-3\right)^2-m=9-m\)
Để phương trình trên có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow9-m\ge0\Leftrightarrow m\le9\)
Áp dụng Viet, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=m\end{matrix}\right.\)
a) Ta có:
\(x_1^2+x_2^2=36\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=36\\ \Leftrightarrow6^2-2m=36\Leftrightarrow2m=0\Leftrightarrow m=0\left(tm\right)\)
b) Ta có:
\(\frac{1}{x_1}+\frac{1}{x_2}=3\Leftrightarrow\frac{x_2+x_1}{x_1x_2}=3\Leftrightarrow\frac{6}{m}=3\Leftrightarrow m=2\left(tm\right)\)
c) Ta có:
\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-x_2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=10\\x_1-x_2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=x_1-4=5-4=1\end{matrix}\right.\)
Thay x1; x2 vào x1x2=m, ta có:
\(5\cdot1=m\Leftrightarrow m=5\left(tm\right)\)
Theo Viet ta co :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-1\end{matrix}\right.\)
Ta co : \(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1.x_2\right)^2=\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]-2\left(x_1.x_2\right)^2\)
\(\Rightarrow\left[m^2-2.\left(m-1\right)\right]^2-2\left(m-1\right)^2\)
\(\Leftrightarrow\left(m^2-2m+2\right)^2-2\left(m-1\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(m-1\right)^2\)
\(\Leftrightarrow-\left(m-1\right)^2\)
( a = 1; b = m; c = m - 1 )
\(\Delta=b^2-4ac\)
\(=m^2-4.1.\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
Pt luôn có 2 nghiệm với mọi m
Theo Vi-et ta có:
\(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=-m\\P=x_1x_2=m-1\end{cases}}\)
Ta có: \(P=x^2_1+x_2^2-6\left(x_1x_2\right)\)
\(\Leftrightarrow P=S^2-2P-6P\)
\(\Leftrightarrow P=m^2-2\left(m-1\right)-6\left(m-1\right)\)
\(\Leftrightarrow m^2-2m+2-6m+6\)
\(\Leftrightarrow m^2-8m+8\)
\(\Leftrightarrow m^2+8m+4^2-4^2+8\)
\(\Leftrightarrow\left(m+4\right)^2-8\ge-8\)
Vậy \(MinP=-8\Leftrightarrow\left(m+4\right)^2=0\)
\(\Leftrightarrow m=-4\)