Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D K M 1 2 1 2 1 1 2
Ta có: AH là đường cao của \(\Delta BAD\left(gt\right)\)(1)
Mà D là điểm đối xứng của B qua H
\(\Rightarrow\) HB = HD
Nên AH cũng là đường trung tuyến của \(\Delta BAD\) (2)
Từ (1), (2) \(\Rightarrow\) \(\Delta BAD\) cân tại A
\(\Rightarrow\) AH cũng là đường phân giác
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) (3)
Mà \(\widehat{A_1}+\widehat{HAC}=90^o\) (2 góc phụ nhau) (4)
Và \(\widehat{C_1}+\widehat{HAC}=90^o\)(2 góc phụ nhau) (5)
Từ (4), (5) \(\Rightarrow\widehat{A_1}=\widehat{C_1}\) (6)
Xét \(\Delta DCK\)và \(\Delta DAH\) ta có:
\(\widehat{DKC}=\widehat{DHA}=90^o\left(gt\right)\left(7\right)\)
\(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh) (8)
Từ (7), (8) \(\Rightarrow\Delta DCK\sim\Delta DAH\left(G-G\right)\left(9\right)\)
Từ (9) \(\Rightarrow\) \(\widehat{C_2}=\widehat{A_2}\) (10)
Từ (3), (6), (10) \(\Rightarrow\)\(\widehat{C_1}=\widehat{C_2}\) (11)
Ta lại có: HM là đường trung tuyến ứng với cạnh huyền AC của \(\Delta AHC\) vuông tại H
\(\Rightarrow HM=\dfrac{1}{2}AC\) (12)
Mà \(AM=MC=\dfrac{1}{2}AC\) (13)
Từ (12), (13) \(\Rightarrow\) HM = MC
Nên \(\Delta HMC\) cân tại M
\(\Rightarrow\) \(\widehat{H_1}=\widehat{C_1}\) (14)
Từ (11), (14) \(\Rightarrow\widehat{C_2}=\widehat{H_1}\)
Mà đây là cặp góc ở vì trí so le trong
\(\Rightarrow\) HM // CK
Mà AK \(\perp\) CK
\(\Rightarrow HM\perp AK\) \(\Rightarrow HM\perp AD\)
Ta có vế trái : \(\dfrac{x^2+y^2+2xy-\left(z^2+2zt+t^2\right)}{x+y-z-t}\)
\(=\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{x+y-z-t}\)
\(=\dfrac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{x+y-z-t}=x+y+z+t\) (1)
Vế phải : \(\dfrac{x^2+z^2+2zt-\left(y^2+2yt+t^2\right)}{x-y+z-t}\)
\(=\dfrac{\left(x+z-y-t\right)\left(x+y+z+t\right)}{x-y+z-t}=x+y+z+t\)(2)
Từ (1)và (2)\(\Rightarrow\left(đpcm\right)\)