\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)

Tính M=\(\frac{5x+2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Đặt \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=k\)                                         

\(\Rightarrow x=7k,y=3k,z=4k\)      

Thay vào M, ta có: \(\frac{5.7k+2.3k+4k}{7k+4.3k-3.4k}=\frac{35k+6k+4k}{7k+12k-12k}=\frac{k\left(35+6+4\right)}{k\left(7+12-12\right)}=\frac{45k}{7k}=\frac{45}{7}\)   

Vậy M = 45/7   

Học tốt^^ Mình chụp ảnh rồi mà không gửi lên được nên hơi lâu ^^

13 tháng 11 2020

Đặt \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)

\(\Rightarrow x=7k\)\(y=3k\)\(z=4k\)

Thay các giá trị của x, y, z vào biểu thức M ta có:

\(M=\frac{5.7k+2.3k+4k}{7k+4.3k-3.4k}=\frac{35k+6k+4k}{7k+12k-12k}=\frac{45k}{7k}=\frac{45}{7}\)

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

25 tháng 7 2020

câu a số hơi lẻ bạn ơi

NV
25 tháng 7 2020

\(x=231;z=35;y=98\) có lẻ đâu em

16 tháng 8 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

    \(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)

Áp dụng t/c dãy tỉ số bằng nhau ,ta được:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)

Do đó: x=4

            y=6

           z=9

Vậy......

16 tháng 8 2019

b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)

        \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)

Vậy 

4 tháng 3 2020

Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)

\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)

Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)

17 tháng 5 2017

Ta có : \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

=>\(\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4y\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)

Hay \(\frac{12x-8y}{16}=\frac{6z-12y}{9}=\frac{8y-6z}{4}\)\(\frac{12x-8y+6z-12y+8y-6z}{16+9+4}=0\)

+, \(\frac{12x-8y}{16}=0\)=>\(12x-8y=0\)=>\(12x=8y\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

+, \(\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\Rightarrow z=2x\Rightarrow\frac{z}{4}=\frac{x}{2}\left(2\right)\)

+, \(\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\Rightarrow4y=3z\Rightarrow\frac{y}{3}=\frac{z}{4}\left(3\right)\)

Từ (1) , (2) và (3) ta suy ra : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)(đpcm)

1 tháng 12 2017

Cam on

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0