Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)
\(\Rightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow-3x+8=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Rightarrow-3x+8=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Rightarrow\frac{16}{5}x^2-\frac{81}{5}x+\frac{88}{5}=0\)
Ta có \(\Delta=\frac{81^2}{5^2}-4.\frac{16}{5}.\frac{88}{5}=\frac{929}{25},\sqrt{\Delta}=\frac{\sqrt{929}}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{81+\sqrt{929}}{32}\\x=\frac{81-\sqrt{929}}{32}\end{cases}}\)
a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)
Với a = 4
Thay vào phương trình (t) ta được:
\(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)
\(\Leftrightarrow2x^2=2x^2-8\)
\(\Leftrightarrow0x=-8\)
Vậy phương trình vô nghiệm
b) Nếu x = -1
\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)
\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)
\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)
\(\Leftrightarrow-a^2+2a=-2-1+3\)
\(\Leftrightarrow a\left(2-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy a = {0;2}
NĂM MỚI VUI VẺ
\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)
\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)
\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)
Vậy..
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\left(x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(kot/m\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)
=> x =-1
ĐK: x khác -1 và x khác 1.
\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)
<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0
<=> 2x2 + 13x + 21 = 0
<=> 2x2 + 6x + 7x + 21 = 0
<=> 2x.(x + 3) + 7.(x + 3) = 0
<=> (x + 3).(2x + 7) = 0
<=> x + 3 = 0 hoặc 2x + 7 = 0
<=> x = -3 hoặc x = -7/2
Vậy S = {-7/2; -3}.