Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.
Gọi d là ƯCLN (a,a+b) và d thuộc N*
=> a+b chia hết cho d ; b chia hết cho d
=> a chia hết cho d ; b chia hết cho d
Mà phân số a/b tối giản =>d = 1
=> ƯCLN(a,a+b)=1
=> Phân số a/a+b tối giản
Ta có
\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)
Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản
Vậy\(\dfrac{a+b}{b}\)là phân số tối giản
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1
a, Giả sử \(\frac{a+b}{b}\)không tối giản thì tử và mẫu có ước chung \(d\ne\pm1\), suy ra \((a+b)⋮d;b⋮d(1)\)
\((a+b)⋮d\)nên \(\left[(a+b)-b\right]⋮d\), do đó \(a⋮d(2)\)
Từ 1 và 2 suy ra \(\frac{a}{b}\)không tối giản . Vậy : \(\frac{a+b}{b}\)là phân số tối giản
b, Giải thích tương tự như câu a nhé :v
a) Giả sử \(\frac{a+b}{b}\)không tối giản thì tủ và mẫu có ước chung d \(\ne\)+1 , -1 suy ra (a + b ) \(⋮\)d,b \(⋮\)d (1) Nên (a+b) - b \(⋮\)d , do đó a \(⋮\)d (2)
Từ 1 và 2 ta có \(\frac{a}{b}\)không tối giản ( điều này trái với đầu bài)
Vậy \(\frac{a+b}{b}\)là phân số tối giản
b) Giải thích tương tự như câu a
\(\frac{a+b}{b}\)=\(\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)
1 là ps tối giản, \(\frac{a}{b}\)à ps chưa tối giản
suy ra \(\frac{a+b}{b}\) là ps tối giản