\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}T\text{ÍNH}A=\frac{a+b}{c+d}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

xem lại đề đi

Mình thử nha :33

Ta có : \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)

\(\Leftrightarrow\left(a+b+c+d\right)\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\cdot2000=50\) ( do \(a+b+c+d=2000\) )

\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{a}{b+c+d}=50\)

\(\Rightarrow S=50-4=46\)

Vậy : \(S=46\) với a,b,c,d thỏa mãn đề.

27 tháng 1 2022

địt mẹ mày

5 tháng 12 2017

ta có:\(\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{a+d+a-b}{b}=\dfrac{d+a+b-c}{c}\)\(=>\dfrac{a+b+c-d}{d}+2=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2\)\(=>\dfrac{a+b+c+d}{d}=\dfrac{b+c+d+a}{a}=\dfrac{c+d+a+b}{b}=\dfrac{d+a+b+c}{c}\)Nếu a+b+c+d=0=>a+b=-(c+d)

b+c=-(a+d)

c+d=-(a+b)

a+d=-(b+c)

thay vào bt M ta có:\(\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(d+a\right)}{d+a}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}\)=>-1-1-1-1=-4

Nếu a+b+c+d≠0

=>a=b=c=d thì lúc đó M=1+1+1+1=4

Vậy M=4 hoặc M=-4

8 tháng 11 2017

cậu bấm vào câu hỏi tương tự ấy

25 tháng 7 2019
https://i.imgur.com/oq3xvVb.jpg
25 tháng 7 2019

bạn làm cách nào mà có câu trả lời bằng hình ảnh

10 tháng 2 2017

\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Leftrightarrow\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

10 tháng 2 2017

Cảm ơn bạn nhiềuhihi