Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)
\(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)
\(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)
Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
Vậy P=8
Cho hỏi tớ sai chỗ nào ạ :>?Góp ý giúp nha?
Đặt :
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{7}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=4k\\c=7k\end{matrix}\right.\) \(\left(1\right)\)
Thay \(\left(1\right)\) zô \(A=\dfrac{a-b+c}{a+2b-c}\) ta được :
\(A=\dfrac{2k-5k+7k}{2k+2.5k-7k}\)\(=\dfrac{4k}{5k}\) \(=\dfrac{4}{5}\)
Ta có
\(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15\)
\(\Rightarrow Q=259.15-3=3885\)
Hì
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
a) \(A< 0\Leftrightarrow\frac{x^2+3}{x-2}< 0\)
Mà \(x^2+3>0\Rightarrow x-2< 0\Leftrightarrow x< 2\)
b) \(A\inℤ\Leftrightarrow\frac{x^2+3}{x-2}\in Z\)
Ta có \(\frac{x^2+3}{x-2}=\frac{\left(x^2-4x+4\right)+\left(4x-8\right)+7}{x-2}\)
\(=x-2+4+\frac{7}{x-2}\)
\(\Rightarrow\frac{x^2+3}{x-2}\in Z\Leftrightarrow7⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a-b+c}{4}\Rightarrow a-b+c=2a\)
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a+2b-c}{2+2.5-7}=\frac{a+2b-c}{5}\Rightarrow a+2b-c=\frac{5}{2}a\)
\(\Rightarrow A=\frac{2a}{\frac{5}{2}a}=\frac{4}{5}\)
đặt a/2=b/5=c/7=k => a=2k,b=5k,c=7k
Ta có: \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)