K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Từ đó, ta được:\(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(bk+dk\right)^3}{\left(b+d\right)^3}=\dfrac{\left[k\left(b+d\right)\right]^3}{\left(b+d\right)^3}=\dfrac{k^3.\left(b+d\right)^3}{\left(b+d\right)^3}=k^3\left(1\right)\) \(\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}=\dfrac{\left(bk-dk\right)^3}{\left(b-d\right)^3}=\dfrac{\left[k\left(b-d\right)\right]^3}{\left(b-d\right)^3}=\dfrac{k^3.\left(b-d\right)^3}{\left(b-d\right)^3}=k^3\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{\left(a+c\right)^3}{\left(b+d\right)^3}=\dfrac{\left(a-c\right)^3}{\left(b-d\right)^3}\)

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok

14 tháng 9 2017

A=\(\dfrac{5}{4}\).(5-\(\dfrac{4}{3}\)).(\(-\dfrac{1}{11}\))

= \(\dfrac{5}{4}\).\(\dfrac{11}{3}\).(\(-\dfrac{1}{11}\))

=\(\dfrac{5}{4}\).[\(\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\text{]}\)

=\(\dfrac{5}{4}.\dfrac{1}{3}\)

=\(\dfrac{5}{12}\) (1)

B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\) =\(\dfrac{3}{4}:\text{[}\left(-12\right).\left(-\dfrac{2}{3}\right)\text{]}\)

=\(\dfrac{3}{4}:8\) =\(\dfrac{3}{4}.\dfrac{1}{8}\)=\(\dfrac{3}{32}\)(2)

C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) =\(\dfrac{5}{4}:\text{[}\left(-15\right).\left(-\dfrac{2}{5}\right)\text{]}\)

=\(\dfrac{5}{4}:6=\dfrac{5}{4}.\dfrac{1}{6}=\dfrac{5}{24}\left(3\right)\)

D=(-3).\(\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\) =(-3).\(\left(-\dfrac{7}{12}\right)\):(-7)=\(\dfrac{7}{4}:\left(-7\right)\)=\(\dfrac{7}{4}\).\(\left(\dfrac{-1}{7}\right)\)=\(\dfrac{-1}{4}\) (4)

Từ (1),(2),(3)và(4)=>Ta có thể sắp xếp các kết quả trên theo thứ tự tăng dần là:

(Bạn tự làm nhé! mình bận đi học rồileuleu)

\(A=\dfrac{5}{4}\cdot\dfrac{15-4}{3}\cdot\dfrac{-1}{11}=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}\)=-50/120

\(B=\dfrac{3}{4}\cdot\dfrac{-1}{12}\cdot\dfrac{-2}{3}=\dfrac{3\cdot2}{4\cdot12\cdot3}=\dfrac{2}{4\cdot12}=\dfrac{1}{24}\)=5/120

\(C=\dfrac{5}{4}\cdot\dfrac{-1}{15}\cdot\dfrac{-2}{5}=\dfrac{2}{4\cdot15}=\dfrac{1}{30}\)=4/120

\(D=3\cdot\dfrac{8-15}{12}\cdot\dfrac{-1}{7}=\dfrac{1}{4}\)=30/120

Vì -50<4<5<30

nên A<C<B<D

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

6 tháng 9 2017

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrow\) đpcm

6 tháng 9 2017

cam on nha

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?