Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a,
Xét tứ giác DGBC có: DG//BC,DB//GC
=>Tứ giác DGBC là hình bình hành
câu b. đề sai ko người lạ ơi
A) Xét tam giác DMB và tam giác MAN có : MA=MB ; góc MBD = góc MAN ( vì hai góc sole trong) ; góc AMN=góc BMD ( vì hai góc đối đỉnh) vậy tam giác DMB = tam giác MAN ( G-C-G) suy ra : MN=MD mà ta lại có MNsong song với BC và bằng 1/2 BC vậy suy ra : MN+MD=BC mà ta lại có MN song song với BC suy ra DN cũng song song với BC vậy Tứ giác BDNC là hình bình hành
B) Tứ giác BDNH là hình thang cân Do: DN song song với BH vậy tứ giác DNHB là (hình thang)* mà ta lại có : AN = DB ; AN=NH ( vì đường trung tuyến ứng với cạnh huyền) vậy DH = NH** từ (*) và (**) suy ra : tứ giác BDNH là hình thang cân
A B C E G n D
ý a dễ rồi bn tự làm.
b) Do GC//AD\(\Rightarrow\frac{GC}{AD}=\frac{GE}{DE}=\frac{CE}{AE}\left(1\right)\)
Do EG//BC \(\Rightarrow\frac{AD}{DB}=\frac{AE}{CE}=\frac{DE}{BC}\left(2\right)\)
Từ (1) và (2) => \(\frac{DA}{DB}=\frac{DE}{GE}=DA.GE=DB.DE\)
c) \(\widehat{GEC}=\widehat{AED}\left(đđ\right)\)
\(\widehat{AED}=\widehat{ACB}\)
\(\Rightarrow\widehat{GEC}=\widehat{ACB}\)
Xét \(\Delta GEC\)và \(\Delta ACB\)
\(\widehat{CCA}=\widehat{CAB}\)
\(\widehat{GEC}=\widehat{ACB}\)
=> đpcm (khúc c mk cũng chưa chắc)