Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu C mình ghi thiếu: Chứng minh \(\Delta\) ADK cân từ đó chứng minh D là trung điểm của EK
hình pn tự vẽ nka
a) Xét \(\Delta ABD\) và \(\Delta EBD\)có
BA = BE (giả thiết)
góc \(ABD=EBD\) ( phân giác góc B)
BD cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ( hình như đề câu b sai hay s ó pn)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) xét \(\Delta\)ABD và \(\Delta\)EBD có:
BA = BE (gt)
BD chung
góc ABD = góc EBD (BD là p/g của góc ABC)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) xét \(\Delta\)ABH và \(\Delta\)EBH có:
BA = BE (gt)
góc ABD = góc EBD (BD là p/g của góc ABC)
BH chung
=> \(\Delta\)ABH = \(\Delta\)EBH (c.g.c)
=> góc BHA = góc BHE (2 góc tương ứng)
mà góc BHA + góc BHE = 180 độ (2 góc kề bù)
=> góc BHA = góc BHE = \(\dfrac{180^0}{2}=90^0\)
=> BD \(\perp\) AE
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a)Xét tam giác ABD và EBD, có:
B1=B2 (Vì BD là tia phân giác)
BA=BE (gt)
BD là cạnh chung
=>tam giác ABD=tam giác EBD (c-g-c)
a, Xét ΔABD và ΔEBD có :
BD là cạnh chung
góc ABD = góc EBD (BD là tia phân giác của góc ABE)
BA = BE (gt)
=> ΔABD = ΔEBD (c.g.c)
b, Vì BA = BE (gt) => ΔABE cân tại B
Mà BD là tia phân giác của góc ABE
=> BD là đường cao ứng với AE (t/c)
=> BD ⊥ AE tại H
c, Vì BD // AK (gt) => góc BDA = góc DAK ( So le trong)
Vì BD // AK (gt) => góc EBD = góc ADK ( Đồng vị)
Mà góc BDA = góc EBD
=> góc DAK = góc ADK
=> ΔADK cân tại D
=> DA = DK
mà DA = DE
=> DK = DE
=> D là trung điểm của EK (điều phải chứng minh)