K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo

3 tháng 5 2018

a) Áp dụng định lý pytago , ta có tam giác ABC vuông tại A, AB = 6cm và AC = 8cm

=> BC2 = AB2 + AC2 = 36+ 64 = 100

=> BC = 10 cm

b) Xét tam giác AHD và tam giác AHB có ;

AH chung

góc AHD = góc AHB

HD = HB

=> tam giác AHD = tam giác AHB ( c.g.c )

=> AB = AD ( 2 cạnh tương ứng )

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

4 tháng 5 2020

a) Vì AH = HD => EH là đg trung tuyến của tg ADE

Khi đó C thuộc đg trung tuyến EH (1)

Do tg ABC cân tại A

mà AH là đg cao của tg ABC

=> AH là đg trung trực của tg ABC

=> BH = CH

=> BH = CH = 1/2 BC

Lại do BC = CE

=> CH = 1/2 CE

hay CE = 2/3 EH (2)

Từ (1); (2) => C là trọng tâm tg ADE.

4 tháng 5 2020

Xét ΔAHBΔAHB và ΔAHCΔAHC có :

HAHA chung

HB=HCHB=HC ( AH là đường trung tuyến của BC )

AB=ACAB=AC ( ΔABCΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )

⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o

Xét ΔAHEΔAHE và ΔHEDΔHED có :

HEHE chung

HA=HDHA=HD ( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)

Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )

⇒DM=ME⇒DM=ME

Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ⇒MHE^=MEH^

Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)

⇒MHEˆ=HEAˆ⇒MHE^=HEA^

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AEAE (đpcm)

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)

7 tháng 1 2022

Cho sp đi

7 tháng 1 2022

Cho sp đi