K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

ko biết dâu nha

29 tháng 1 2019

A B C P F E N M x Q S O

Gọi S là giao điểm của 2 đường tròn (PCE) và (PBF).

Trước hết, ta thấy \(\Delta\)PCE ~ \(\Delta\)AOB => ^CPE = ^OAB. Tương tự: ^BPF = ^OAC.

Suy ra: ^CPE + ^BPF = ^OAB + ^OAC = ^BAC = 1800 - ^BPC => E,P,F thẳng hàng => ^EPS + ^FPS = 1800

Mà ^FPS + ^SNF = 1800 nên ^EPS = ^SNF => ^EMS = ^SNQ (Vì ^EPS = ^EMS)

=> Tứ giác SMQN nội tiếp. Hay S thuộc đường tròn (QMN).

Bằng các góc nội tiếp, ta có: ^BSC = ^BSP + ^CSP = ^BFP + ^CEP = ^BAC = const. Mà BC cố định

Nên S nằm trên đường tròn đối xứng với (O) và BC => Đường tròn (BCS) cố định

Ta sẽ chứng minh: Đường tròn (QMN) tiếp xúc với (BCS) cố định (tại điểm chung S).

Thật vậy, từ S vẽ tiếp tiếp Sx của đường tròn (QMN). Dễ thấy: ^MSx = ^MNS = ^PBS (Do tứ giác BPSN nội tiếp)

Xét đường tròn (PCE): ^MSC = ^MPC = ^CBP. Từ đó: MSx + ^MSC = ^PBS + ^CBP = ^CBS

Do đó: Sx cũng là tiếp tuyến của đường tròn (BCS). Cho nên (QMN) luôn tiếp xúc (BCS) cố định (đpcm).

5 tháng 4 2020

a) AM là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)

=> M là điểm chính giữa cung BC

=> OM _|_ BC (đpcm)

b) AN là phân giác \(\widehat{CAt}\)

=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)

                                    và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)

=> \(\widehat{NCB}=\widehat{NMC}\)

Xét tam giác NCD và tam giác NMC có:

\(\widehat{MNC}\)chung

\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)

=> Tam giác NCD đồng dạng với tam giác NMC (g.g)

=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)

=> NC _|_ CM

Xét tam giác NCM nội tiếp có NC _|_ CM

=> NM là đường kính

=> N,O,M thẳng hàng

c) Tam giác MAN nội tiếp đường kín MN

=> AM _|_ AN => Tam giác KAD vuông tại A

Xét tam giác KAD vuông tại A có AI là đường trung bình

=> AI=ID

=> Tam giác AID cân tại A

=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)

Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)

\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)

mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)

mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung

=> IA là tiếp tuyến của (O)