Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác HMA vuông tại H nên theo định lí py-ta-go,có:
\(HA^2+HM^2=AM^2\)(1)
Tương tự ta có:
\(HM^2+HB^2=BM^2\) (2)
\(BK^2+KM^2=BM^2\)(3)
\(KM^2+KC^2=MC^2\)(4)
\(IM^2+IC^2=MC^2\)(5)
\(AI^2+IM^2=AM^2\)(6)
Cộng (1),(3),(5) vế theo vế, có:
\(HA^2+HM^2+BK^2+KM^2+IC^2+IM^2=AM^2+BM^2+MC^2\)
Cộng (2),(4),(6) vế theo vế, có:
\(HB^2+HM^2+KM^2+KC^2+AI^2+IM^2=AM^2+BM^2+MC^2\)Từ (*) và (**), có:
\(HA^2+HM^2+BK^2+KM^2+IC^2+IM^2=BH^2+HM^2+KM^2+KC^2+AI^2+IM^2\)=> \(HA^2+BK^2+IC^2=BH^2+KC^2+AI^2\)
Vậy có đpcm...
( mk ghi tóm tắt thôi, bạn nhớ ghi cụ thể. Hình tự vẽ nha)
A B M K C I H
a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :
AI cạnh chung
\(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)
=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
=> AH = AK(2 cạnh tương ứng)
b) Gọi M là trung điểm của BC
Xét \(\Delta BMI\)và \(\Delta CMI\)có :
BM = CM(gt)
\(\widehat{BMI}=\widehat{CMI}=90^0\)
MI cạnh chung
=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)
=> IB = IC(2 cạnh tương ứng)
\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)
Xét \(\Delta IHB\)và \(\Delta IKC\)có :
+) IH = IK(chứng minh trên)
+) IB = IC(chứng minh trên)
=> IH + IB = IK + KC
=> BH = CK(hai cạnh tương ứng)
c) Ta có : AC = AK + KC (1)
AB = AH - BH (2)
Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)
Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :
AK = \(\frac{AC+AB}{2}\)
Tương tự ta được \(CK=\frac{AC-AB}{2}\)
Đơn giản thôi:
O F D E A B C
Vẽ AO, BO, CO
Ta có: \(\hept{\begin{cases}AE^2=AO^2-OE^2\\BF^2=BO^2-OF^2\\CD^2=OC^2-OD^2\end{cases}}\)
Cộng vế theo vế:
Ta có: \(AE^2+BF^2+CD^2=AO^2-OE^2+BO^2-OF^2+OC^2-OD^2\)
Suy ra: \(AE^2+BF^2+CD^2=\left(AO^2-OF^2\right)+\left(BO^2-OD^2\right)+\left(OC^2-OE^2\right)=AF^2+BD^2+CE^2\)
Vậy...............