Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O
➡️O là tâm đg tròn ngoại tiếp ∆ ABC
➡️AO là đg ttrực của BC (đpcm)
b, Gọi giao điểm của AO là BC là H.
Xét ∆ ABC cân tại A
➡️AO là đg ttrực đồng thời là đg phân giác
➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°
Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)
➡️OA = OB = OC
Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60°
➡️∆ ABO đều
➡️BH là đg cao đồng thời là ttuyến
➡️BH là đg ttuyến của AC
mà E là giao của ttrực AB và ttuyến AO
➡️E là trọng tâm ∆ ABO
C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)
c, Xét ∆ ABC cân tại A
Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°
Gọi OM và ON lần lượt là đg ttrực của AB và AC
Vì AB = AC ➡️AM = BM = AN = CN
Xét ∆ vuông BEM và ∆ CFN có:
Góc M = góc N = 90°
BM = CN (cmt)
Góc ABC = góc ACB (cmt)
➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)
➡️BE = CF ( 2 cạnh t/ư) (1)
ME = NF (2 cạnh t/ư)
Xét ∆ vuông BEM có góc ABC = 30°
➡️Góc BEM = 90° - 30° = 60°
mà góc BEM đối đỉnh với góc OEH
➡️Góc BEM = góc OEH = 60°
Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°
➡️∆ OBE cân tại E
➡️BE = OE
Ta có: OE + ME = OM
OF + NF = ON
mà OM = ON, ME = NF
➡️OE = OF
Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°
➡️∆ OEF đều
➡️OE = EF
mà OE = BE (cmt)
➡️BE = EF (2)
Từ (1) và (2) ➡️BE = EF = CF (đpcm)
Hok tốt~
P/s : ôi mỏi tay quá k mk với~
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
DK là đường trung tuyến
CA cắt DK tại M
Do đó: M là trọng tâm
=>MC=2/3AC=8(cm)
a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật
b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON
\(\Rightarrow\Delta OAN\)cân tại O (1)
Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)
mà\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)
c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC
d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI
\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)mà\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)
Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN