K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật

b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON

\(\Rightarrow\Delta OAN\)cân tại O (1)

Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)

\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)

c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC

5 tháng 4 2017

d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI

\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)

Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN

14 tháng 6 2018

a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O

➡️O là tâm đg tròn ngoại tiếp ∆ ABC 

➡️AO là đg ttrực của BC (đpcm)

b, Gọi giao điểm của AO là BC là H.

Xét ∆ ABC cân tại A

➡️AO là đg ttrực đồng thời là đg phân giác

➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°

Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)

➡️OA = OB = OC

Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60° 

➡️∆ ABO đều

➡️BH là đg cao đồng thời là ttuyến

➡️BH là đg ttuyến của AC

mà E là giao của ttrực AB và ttuyến AO

➡️E là trọng tâm ∆ ABO

C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)

c, Xét ∆ ABC cân tại A

Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°

Gọi OM và ON lần lượt là đg ttrực của AB và AC

Vì AB = AC ➡️AM = BM = AN = CN

Xét ∆ vuông BEM và ∆ CFN có:

Góc M = góc N = 90°

BM = CN (cmt)

Góc ABC = góc ACB (cmt)

➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)

➡️BE = CF ( 2 cạnh t/ư) (1)

     ME = NF (2 cạnh t/ư)

Xét ∆ vuông BEM có góc ABC = 30°

➡️Góc BEM = 90° - 30° = 60°

mà góc BEM đối đỉnh với góc OEH

➡️Góc BEM = góc OEH = 60°

Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°

➡️∆ OBE cân tại E

➡️BE = OE

Ta có: OE + ME = OM

           OF + NF = ON

mà OM = ON, ME = NF

➡️OE = OF

Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°

➡️∆ OEF đều

➡️OE = EF

mà OE = BE (cmt)

➡️BE = EF (2)

Từ (1) và (2) ➡️BE = EF = CF (đpcm)

Hok tốt~

P/s : ôi mỏi tay quá k mk với~

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCBD có 

CA là đường trung tuyến

DK là đường trung tuyến

CA cắt DK tại M

Do đó: M là trọng tâm

=>MC=2/3AC=8(cm)

18 tháng 8 2017

bạn viết có nhầm đề k?

19 tháng 8 2017

Mình nhầm CD thành CK. Đáng nhẽ phải là \(CD\perp BC\)