K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 
<=> a - 2√ab + b ≥ 0 
<=> a + b ≥ 2√ab 
<=> (a + b)/2 ≥ √ab 
dau "=" xay ra khi √a - √b = 0 <=> a = b

10 tháng 3 2020

BĐT tương đương :

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Vậy ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

9 tháng 12 2018

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3b^2}{4}\ge0\)

Dấu "=" xảy ra khi và chỉ khi a = b = 0

11 tháng 3 2018

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!

21 tháng 7 2016

2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)

Ta có  : \(\frac{b}{c+a}< \frac{b}{b+c}\)\(\frac{c}{a+b}< \frac{c}{b+c}\)\(\frac{a}{b+c}< 1\)

\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)

b) Đặt \(x=b+c-a\)\(y=c+a-b\)\(z=a+b-c\);

Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)

Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\)\(\frac{y}{z}+\frac{z}{y}\ge2\)\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)

hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

2 tháng 12 2016

cậu là ai trả lời đi ròi tôi nói cho

2 tháng 12 2016

vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ

17 tháng 3 2016

câu a dễ mà mình học lớp 6 thôi

do a>0 , b> 0 nên a , b là số nguyên dương

=> để a.b=1

thì a=1

b=1

=>(1+1).(1+1)

=    2.2

=4 

4 =4

=> (a+1).(b+1) \(\ge\)

17 tháng 3 2016

bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?