K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài này bạn lấy ở đâu z

\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)

\(\Rightarrow4A=5A-A=1+\left(\frac{1}{5}+\frac{1}{5^2}+\frac{...1}{5^{10}}\right)-\frac{11}{5^{11}}\)

\(< 1+\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)< 1+\frac{1}{4}=\frac{5}{4}\)

\(\Rightarrow A< \frac{5}{4}:4=\frac{5}{16}\)

Lưu ý : \(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\Rightarrow5M=1+\frac{1}{5}+...+\frac{1}{5^9}\Rightarrow4M=5M-M=1-\frac{1}{5^{10}}\)

\(\Rightarrow M=\frac{1}{4}-\frac{1}{5^{10}}:4< \frac{1}{4}\)

9 tháng 12 2019

\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)

\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)

\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)

\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)

Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)

\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)

\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)

\(\Rightarrow B< \frac{5}{4}\)(2)

Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)

\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

24 tháng 8 2015

A= 1/3- 3/4+ 3/5+ 1/72- 2/9- 1/36+ 1/15
A= ( 1/3- 3/5+ 1/15) - (3/4- 1/72+ 2/9+ 1/36)
A= (5/15- 9/15+ 1/15) - (54/72- 1/72+ 16/72+ 2/36)
A= 1- 71/72
A= 1/72
 
 

17 tháng 7 2017

A=1/72