K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

Câu hỏi của Nguyễn Hoàng Kiều Trinh - Toán lớp 9 - Học toán với OnlineMath

2 tháng 6 2018

Ta có:

 \(P=f\left(x\right)=-3x^2-x+4,\left(a=-3,b=-1,c=4\right)\)có đồ thị là 1 Parapol có bề lõm hướng xuống vì \(a< 0\)

\(\Rightarrow P\) đạt GTLN tại \(x=-\frac{b}{2a}=-\frac{-1}{2.\left(-3\right)}=-\frac{1}{6}\)

\(\Rightarrow maxP=f\left(-\frac{1}{6}\right)=-3\left(-\frac{1}{6}\right)^2-\left(-\frac{1}{6}\right)+4=\frac{49}{12}\).

Vì \(-1\le-\frac{1}{6}\le3\) nên P sẽ tăng khi \(-1\le x< -\frac{1}{6}\) và P sẽ giảm khi \(-\frac{1}{6}< x\le3\)

\(f\left(-1\right)=-3\left(-1\right)^2-\left(-1\right)+4=2\)

\(f\left(3\right)=-3\left(3\right)^2-\left(3\right)+4=-26\)

\(\Rightarrow minP=f\left(3\right)=-26\)

2 tháng 1 2021

Từ giả thiết \(-2\le a,b,c\le3\) suy ra:

\(\left\{{}\begin{matrix}\left(a+2\right)\left(a-3\right)\le0\\\left(b+2\right)\left(b-3\right)\le0\\\left(c+2\right)\left(c-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a-6\le0\\b^2-b-6\le0\\c^2-c-6\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge a^2-6\\b\ge b^2-6\\c\ge c^2-6\end{matrix}\right.\)

\(\Rightarrow M=a+b+c\ge\left(a^2+b^2+c^2\right)-18=4\)

\(min=4\Leftrightarrow\left(a;b;c\right)=\left(2;3;3\right)\) và các hoán vị

2 tháng 1 2021

Nhầm

\(\left(a;b;c\right)=\left(-2;3;3\right)\) và các hoán vị

 

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

Không mất tổng quát, giả sử \(c=\max(a,b,c)\Rightarrow 6=a+b+c\leq 3c\Rightarrow c\geq 2\)

Ta có:

\(P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=36-2(ab+bc+ac)\)

\(a,b,c\geq 1\Rightarrow (a-1)(b-1)\geq 0\)

\(\Rightarrow ab\geq a+b-1\)

\(\Rightarrow ab+bc+ac\geq a+b-1+bc+ac\)

\(\Rightarrow ab+bc+ac\geq 6-c-1+c(6-c)\)

\(\Rightarrow ab+bc+ac\geq 11-(c^2-5c+6)\)

\(\Rightarrow ab+bc+ac\geq 11-(c-2)(c-3)\)

\(3\geq c\geq 2\Rightarrow (c-2)(c-3)\leq 0\Rightarrow 11-(c-2)(c-3)\geq 11\)

Do đó: \(ab+bc+ac\geq 11\Rightarrow P=36-2(ab+bc+ac)\leq 14\)

Vậy \(P_{\max}=14\Leftrightarrow (a,b,c)=(3,2,1)\) và các hoán vị.

26 tháng 9 2018

thks nhiều

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)