Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( Q = \dfrac{{{{\left( {\dfrac{{a - b}}{{\sqrt a + \sqrt b }}} \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3{a^2} + 3b\sqrt {ab} }} + \dfrac{{\sqrt {ab} - a}}{{a\sqrt a - b\sqrt a }}\\ Q = \dfrac{{{{\left[ {\dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}} \right]}^3} + 2a\sqrt a + b\sqrt b }}{{3\left( {{a^2} + b\sqrt {ab} } \right)}} + \dfrac{{\sqrt a \left( {\sqrt b - \sqrt a } \right)}}{{\sqrt a \left( {a - b} \right)}}\\ Q = \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3\sqrt a \left( {a\sqrt a + b\sqrt b } \right)}} + \dfrac{{ - \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\ Q = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{{ - 1}}{{\sqrt a + \sqrt b }} = 0 \)
Vậy Q không phụ thuộc vào a,b
1. Ta thấy:
\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)
\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)
\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)
$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)
Từ $(1);(2)$ ta có đpcm.
Câu 2:
Điều kiện đã cho tương đương với:
$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$
$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$
$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$
$\Leftrightarrow 2a^2+2b^2=3a^2-ab$
$\Leftrightarrow a^2-ab-2b^2=0$
$\Leftrightarrow (a+b)(a-2b)=0$
$\Leftrightarrow a=-b$ hoặc $a=2b$
Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$
Khi đó:
$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$
\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)
Lời giải:
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{\frac{[(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})]^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}\)
\(=\frac{(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}\)
\(=\frac{a\sqrt{a}+3a\sqrt{b}+3b\sqrt{a}+b\sqrt{b}-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}=\frac{3\sqrt{a}(a+\sqrt{ab}+b)}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{3\sqrt{a}}{\sqrt{b}-\sqrt{a}}\)
Do đó:
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}+\frac{3\sqrt{a}}{\sqrt{b}-\sqrt{a}}=0\)
Ta có đpcm.