K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Có : 

A = [(x+y).(x+4y)] . [(x+2y).(x+3y)] + y^4

   = (x^2+5xy+4y^2) . (x^2+5xy+6y^2) + y^4

   = (x^2+5xy+5y^2)^2 - y^4 + y^4

   = (x^2+5xy+5y^2)^2 là số chính phương 

Tk mk nha

14 tháng 3 2018

cảm ơn nha

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

\(A=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)

\(A=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4\)

\(A=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)

Đặt \(x^2+5xy+4y^2=a\). Khi đó:

\(A=a(a+2y^2)+y^4=a^2+2ay^2+(y^2)^2\)

hay \(A=(a+y^2)^2\) là một số chính phương.

Ta có đpcm.

9 tháng 4 2018

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(\Rightarrow A=t^2-y^4+y^4\)

\(\Rightarrow A=t^2\)

\(\Rightarrow A=\left(x^2+5xy+5y^2\right)^2\)

\(x;y;z\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{matrix}\right.\)\(\Rightarrow x^2+5xy+5y^2\in Z\)

\(\Rightarrow\left(x^2+5xy+5y^2\right)^2\) là số chính phương

Nên a là số chính phương ( đpcm )

9 tháng 7 2017

Thao Nguyen VT= Vế trái

VP= Vế phải

9 tháng 7 2017

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)

b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

c: \(=6x-y+2x^2+3y-2x^2+x\)

\(=7x+2y\)

d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))