K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}<2\)

2 tháng 5 2016

Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)     (1)

Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=1+\left(1-\frac{1}{50}\right)=1+\frac{49}{50}\)

Mà 1+49/50 < 2   (2)

Từ (1) và (2) ta có: A<1+49/50<2

Vậy A<2

2 tháng 5 2016

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+....+\frac{3}{2^8}\)

\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+....+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\right)\)

\(\Rightarrow S=6-\frac{3}{2^9}=\frac{3069}{512}\)

5 tháng 5 2017

Ta có :

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

5 tháng 5 2017

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\\ \Rightarrow A< 2\)

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa

15 tháng 11 2016

5/s hay là5,s vậy

15 tháng 11 2016

S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263

   = ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)

   =( 1 + 22) + 2 ( 1 + 22) + 2(1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)

   = ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)

   =  5 ( 1 + 2 +24 + 25 +...+ 260

Vậy S chia hết cho 5 vì có một thừa số là 5.

11 tháng 10 2018

1a)2225<31500 vì 2<3;225<1500

c)(1/25)50=(1/5)100>(1/125)35=(1/5)105  ( vì1/5 <1)

2)A=87-218=221-218=218(23-1)=217.2.7=217.14 CHIA HẾT CHO 14

B=52008+52007+52006=52006(52+5+1)=52006.31 CHIA HẾT CHO 31

VIẾT NHẦM NHÉ 2008 THÀNH 2006 MỚI ĐÚNG

CÂU KHÁC LÀM SAU GỬI

11 tháng 10 2018

câu 1

b)231=230.2=810.2<910.3=320.3=331

vào câu hỏi tương tự nha bạn! VD: mik

27 tháng 1 2016

khó quá vì em đang là hs lớp 5