\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{9}=\dfrac{2z-4x}{9}\)

Chứng minh rằn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Sửa đề:

$\dfrac{3x-2y}{4}=\dfrac{2z-4x}{9}=\dfrac{4y-3z}{9}$

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{27}=\dfrac{2\left(4y-3z\right)}{18}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+27+18}=\dfrac{0}{16+27+18}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\4y-3z=0\\2z-4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

3 tháng 8 2017

Từ \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

3 tháng 8 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{3.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

\(\Rightarrow\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{12+9+4}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\\\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\\\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\rightarrowđpcm\)

14 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

15 tháng 10 2017

Ta có: \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow12x-8y=6z-12x=8y-6z=0\)

\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{2}=x,\dfrac{y}{3}=\dfrac{z}{4}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{4}=\dfrac{x}{2},\dfrac{y}{3}=\dfrac{z}{4}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) (đpcm)

20 tháng 8 2017

Tham khảo tại đây nhé: Câu hỏi của Phong Tuấn Đỗ - Toán lớp 7 | Học trực tuyến

30 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

30 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\dfrac{0}{29}=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

9 tháng 11 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{6z-12x}{9}=0\\\dfrac{8y-6z}{4}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

9 tháng 11 2017

Ta có

\(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)

=> \(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất DTS bằng nhau

\(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)=\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}\)=\(\dfrac{0}{29}\)=0

\(\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}\),\(\dfrac{y}{3}=\dfrac{z}{4},\dfrac{z}{4}=\dfrac{z}{2}\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

3 tháng 11 2017

Ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Vậy \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)

27 tháng 12 2017

Theo đề ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

=> \(4.\dfrac{3x-2y}{4}=3.\dfrac{2z-4x}{3}=2.\dfrac{4y-3z}{2}\)

=> \(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

=> \(\dfrac{12x-8y}{16}+\dfrac{6z-12x}{9}+\dfrac{8y-6z}{4}=\dfrac{0}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=8y=6z\\\end{matrix}\right.\)

=> \(\dfrac{12x}{24}=\dfrac{8y}{24}=\dfrac{6z}{24}\)( MSC: 24)

=> \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)

27 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{12x-8x+6x-12x+8y-6z}{16+9+4}\\ =0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

8 tháng 11 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

8 tháng 11 2017

0 từ đâu chui ra vậy bạn với lại đpcm là j?

19 tháng 4 2017

Từ giả thiết \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{4}\)

\(\Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{4x}\)

Áp dung tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{4x}=\dfrac{3xz-2yz+2yz-4xy+4xy-3xz}{4z+3y+4x}=\dfrac{0}{4z+3y+4x}=0\)

\(\Rightarrow3xz=2yz=4xy\)

\(\Rightarrow\dfrac{3xyz}{y}=\dfrac{2xyz}{x}=\dfrac{4xyz}{z}\)

\(\Rightarrow\dfrac{3}{y}=\dfrac{2}{x}=\dfrac{4}{z}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)