K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt : \(\hept{\begin{cases}a=\frac{3-\sqrt{37}}{2}\\b=\frac{3+\sqrt{37}}{2}\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=7\end{cases}\Rightarrow}a,b}\)là nghiệm của PT : \(x^2-3x-7=0\)

Ta cần chứng minh : \(\left(\frac{3-\sqrt{37}}{2}\right)^n+\left(\frac{3+\sqrt{37}}{2}\right)^n=a^n+b^n\in Z\)( * )

Thật vậy :

 \(+n=1\)( * ) đúng

Giả sử * đúng vs n = k nghĩa là : \(a^k+b^k\in Z\)

Vậy ta cần CM : \(a^{k+1}+b^{k+1}\in Z\)

Do \(a^{k+1}+b^{k+1}=\left(a^k+b^k\right)\left(a+b\right)-ab\left(a^{k-1}+b^{k-1}\right)\)

Mà \(\hept{\begin{cases}a^k+b^k\in Z\\a^{k-1}+b^{k-1}\in Z\\ab\in Z\end{cases}}\Rightarrow a^{k+1}+b^{k+1}\in Z\)

Vậy * đúng với mọi n nguyên dương

2 tháng 8 2016

ĐỀ THIẾU số mũ 2010 kìa 
Đặt \(a=\frac{3-\sqrt{37}}{2},b=\frac{3+\sqrt{37}}{2}\)
Có \(\hept{\begin{cases}ab=-14\in Z\\a+b=3\in Z\end{cases}}\)
ta đi c/m bổ đề vs a+b nguyên, ab nguyên  thì a^n+b^n nguyên, 
c/m:Có \(a^n+b^n=\left(a+b\right)^n-\text{ C1n a^(n-1)b + C2n a^(n – 2)b^2 + … + Cnn – 1 ab^(n – 1) }\)
Do a+b nguyên , ab nguyên nên a^n+b^n nguyên
áp dụng bài toán trên với n=2010 => dpcm
với Cnn là tổ hợp châp n của n với n chyaj từ 1 đến n

9 tháng 4 2020

Bài 1 : 

Ta có : 

\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}=\sqrt{25-2.5.2\sqrt{3}+12}\)

\(+\sqrt{25+2.5.2\sqrt{3}+12}\)

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(5-2\sqrt{3}+5+2\sqrt{3}\)

\(=5+5=10\)

9 tháng 4 2020

Bài 2 : 

Với x , y , z > 0 . Ta có : 

+ ) \(\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

+ ) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(2\right)\)

+ ) \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\left(3\right)\)

Xảy ra đăng thức ở : \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow x=y=z\) . Ta có : 

\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{\left(a+b+c\right)}{abc}\)

\(=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)

Áp dụng các bất đẳng thức (1) , (2) , (3) ta được : 

\(P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)

\(=\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)

\(\ge2+8+18=28\)

Dấu " = "  xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)

NV
20 tháng 8 2020

\(x=\sqrt{\frac{4}{32-10\sqrt{7}}}-\frac{1}{18}\left(37+2\sqrt{7}\right)+\frac{\sqrt{2}}{2}\)

\(=\frac{2}{\sqrt{\left(5-\sqrt{7}\right)^2}}-\frac{37+2\sqrt{7}}{18}+\frac{\sqrt{2}}{2}\)

\(=\frac{2}{5-\sqrt{7}}-\frac{37+2\sqrt{7}}{18}+\frac{\sqrt{2}}{2}=\frac{10+2\sqrt{7}}{18}-\frac{37+2\sqrt{7}}{18}+\frac{\sqrt{2}}{2}\)

\(=-\frac{3}{2}+\frac{\sqrt{2}}{2}=\frac{\sqrt{2}-3}{2}\)

\(\Rightarrow2x=\sqrt{2}-3\Rightarrow2x+3=\sqrt{2}\)

\(\Rightarrow\left(2x+3\right)^2=2\Rightarrow4x^2+12x+9=2\)

\(\Rightarrow4x^2+12x+7=0\)

Do đó:

\(A=\left[x^3\left(4x^2+12x+7\right)-1\right]^{2016}+2016\)

\(=\left(0-1\right)^{2016}+2016=2017\)

12 tháng 9 2018

Ta có: \(a=\sqrt{37}-\sqrt{35}\approx0,16668\).

Mà:

\(\frac{2}{13}\approx0,15385\)

\(\frac{1}{6}\approx0,16667\)

\(\frac{2}{11}\approx0,18182\)

\(\frac{1}{5}=0,2\)

\(\frac{2}{9}\approx0,22222\)

Mà \(0,15385< 0,16667< 0,16668< 0,18182< 0,2< 0,22222\).

\(\Leftrightarrow\frac{2}{13}< \frac{1}{6}< \sqrt{37}-\sqrt{35}< \frac{2}{11}< \frac{1}{5}< \frac{2}{9}\).

Vậy số lớn nhất nhỏ hơn a là \(\frac{1}{6}\), số nhỏ nhất lớn hơn a là \(\frac{2}{11}\).

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

13 tháng 9 2017

\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}\)

\(=\sqrt{37-2\sqrt{300}}+\sqrt{37+2\sqrt{300}}\)

\(=\sqrt{\left(5-\sqrt{12}\right)^2}+\sqrt{\left(5-\sqrt{12}\right)^2}\)

\(=|5-\sqrt{12}|+|5+\sqrt{12}|\)

\(=5-\sqrt{12}+5+\sqrt{12}\)

\(=10\)

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#