K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Kết quả mỗi lần chọn số là bộ (a;b;c) với \(a \in \left\{ {1;2;3;...;8;9} \right\}\)là chữ số hàng trăm \(b,c \in \left\{ {0;1;2;...;8;9} \right\}\)là chữ số hàng chục và hàng đơn vị

Không gian mẫu của phép chọn là

\(\Omega  = \left\{ {\overline {abc} \left| {a = 1,2,...,8,9;b,c = 0,1,2,...,9} \right.} \right\}\)

b) Tổng số kết quả có thể xảy ta của phép thử là \(n\left( \Omega  \right) = 9.10.10 = 900\)

Ta thấy rằng số lập phương nhỏ nhất có ba chữ số là 125 của số 5, số lập phương lớn nhất có ba chữ số là 729 của 9

Suy ra, số kết quả thuận lợi cho biến cố “Số được chọn là lập phương của một số nguyên” là 5

Vậy xác suất của biến cố “Số được chọn là lập phương của một số nguyên” là \(P = \frac{{5}}{{900}} = \frac{1}{{180}}\)

c) Tổng số kết quả có thể xảy ta của phép thử là \(n\left( \Omega  \right) = 9.10.10 = 900\)

Ta thấy rằng các số có chữ số tận cùng là 5 hoặc 0 đều chi hết cho 5, nên số kết quả thuận lợi cho biến cố “Số được chọn chia hết cho 5” là \(9.10.2 = 180\)

Suy ra xác suất của biến cố “Số được chọn chia hết cho 5” là \(P = \frac{{180}}{{900}} = \frac{1}{5}\)

28 tháng 9 2023

961=312 , em xem lại câu b nha

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số nguyên dương nhỏ hơn 100 luôn có 1 hoặc 2 chữ số nên ta có không gian mẫu của phép thử trên là: \(\Omega  = \left\{ {1,2,3,4,5,...98,99} \right\}\)

b) Tập hợp biến cố A: “Số được chọn là số chính phương” là:

\(A = \left\{ {{a^2}\left| {a = 1,2,...,9} \right.} \right\}\)

c) Cứ 4 số thì có 1 số chia hết cho 4, số nhỏ nhất là 4 và lớn nhất là 96 nên số kết quả thuận lợi cho biến cố B là \(\dfrac{96-4}{4}+1=24\).

Vậy có 24 kết quả thuận lợi cho biến cố B: “Số được chọn chia hết cho 4”

27 tháng 9 2023

\(a,\Omega=\left\{1;2;3;4;5;...;98;99\right\}\\ b,A=\left\{1;4;9;16;25;36;49;64;81\right\}\\c, B=\left\{4;8;16;20;24;...;92;96\right\}\\ Số.kết.quả.thuận.lợi.cho.B:\left(96-4\right):4+1=24\left(kết.quả\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(\Omega  = \left\{ {1;2;...;22} \right\}\).

b) \(B = \left\{ {3;6;9;12;15;18;21} \right\}\).

\(\overline A  = \left\{ {1;2;4;5;7;8;10;11;13;14;16;17;19;20;22} \right\}\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(\Omega  = \left\{ {1;2;...;30} \right\}\).

b) \(A = \left\{ {2;3;5;7;11;13;17;19;23;29} \right\}\).

\(\overline A  = \left\{ {1;4;6;8;9;10;12;14;15;16;18;20;21;22;24;25;26;27;28;30} \right\}\).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số bạn đi xe đạp đến trường là: \(40.40\%  = 16\) ( học sinh )

b) Chọn ngẫu nhiên một bạn để phân công vào đội xung kích của trường từ 40 bạn ta được một tổ hợp chập 1 của 40 phần tử. Do đó, không gian mẫu \(n\left( \Omega  \right) = C_{40}^1\)( phần tử)

Gọi A là biến cố “Bạn được chọn là bạn đến trường bằng xe đạp”.

Để chọn 1 bạn học là bạn đến trường bằng xe đạp ta được một tổ hợp chập 1 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^1\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^1}}{{C_{40}^1}} = \frac{2}{5}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gọi số lập được có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \) với \(\left( {{a_1},{a_2},{a_3},{a_4},{a_5}} \right) = 1,2,3,4,5\)

Tổng số khả năng xảy ra của phép thử là \(n\left( \Omega  \right) = 5!\)

a) Biến cố “là số chẵn” xảy ra khi chữ số tận cùng là số chẵn, suy ra \({a_5} = \left\{ {2,4} \right\}\)

Số kết quả thuận lợi cho biến cố “là số chẵn” là \(n = 4!.2\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)

b) Biến cố “chia hết cho 5” xảy ra khi chữ số tận cùng là số 5

Suy ra, số kết quả thuận lợi cho biến cố “chia hết cho 5” là \(n = 4!.1\)

Vậy xác suất của biến cố “là số chẵn” là \(P = \frac{{4!.1}}{{5!}} = \frac{1}{5}\)

c) Biến cố “\(a \ge 32000\)” xảy ra khi có dạng như dưới đây\(\overline {5{a_2}{a_3}{a_4}{a_5}} ;\overline {4{a_2}{a_3}{a_4}{a_5}} ;\overline {34{a_3}{a_4}{a_5}} ;\overline {35{a_3}{a_4}{a_5}} ;\overline {32{a_3}{a_4}{a_5}} \)

Suy ra, số kết quả thuận lợi cho biến cố “\(a \ge 32000\)” là \(n = 2.4! + 3.3!\)

Vậy xác suất của biến cố “\(a \ge 32000\)” là \(P = \frac{{2.4! + 3.3!}}{{5!}} = \frac{{11}}{{20}}\)

d) Để sắp xếp các chữ số của ta cần thực hiện hai công đoạn

Công đoạn 1: Sắp xếp 2 chữ số chẵn trước có \(2!\) cách

Công đoạn 2: Sắp xếp 3 chũ số lẻ xen vào 3 chỗ trồng tạo bởi 2 chữ số chẵn có \(3!\) cách

Suy ra, số kết quả thuận lợi cho biến cố “Trong các chữ số của  không có hai chữ số lẻ nào đứng cạnh nhau” là \(2!.3!\)

Vậy xác suất của biến cố là \(P = \frac{{2!.3!}}{{5!}} = \frac{1}{{10}}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega  \right) = 120\)

Gọi là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn

Để chọn ra 3 thẻ thuận lợi cho biến cố ta có 3 khả năng

+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng

+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng

+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng

Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)

Vậy xác suất của biến cố là:   \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 2 của 20 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{20}^2\) ( phần tử)

b) Gọi A là biến cố “Tích các số trên hai thẻ là số lẻ”

Để tích các số trên thẻ là số lẻ thì cả hai thẻ bốc được đểu phải là số lẻ vậy nên ta phải chọn ngẫu nhiên 2 thẻ từ 10 thẻ số lẻ. Do đó, số phần tử các kết quả thuận lợi cho biến cố A là tổ hợp chập 2 của 10 phần tử: \(n\left( A \right) = C_{10}^2\) ( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{10}^2}}{{C_{20}^2}} = \frac{9}{{38}}\)

NV
21 tháng 4 2023

Không gian mẫu: \(A_6^3=120\)

Gọi số cần lập có dạng \(\overline{abc}\)

Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)

Chọn và hoán vị cặp ab: \(A_5^2=20\) cách

\(\Rightarrow1.20=20\) số chia hết cho 5

Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)