Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)
Câu 1 | n.(n+1)2.(n+2) | 4 điểm |
Câu 2 | A>B | 4 điểm |
Câu 3 | -2;-1;0;1 | 4 điểm |
Câu 4 | a=1;b=-2;c= | 4 điểm |
Câu 5 | Q= -1 | 4 điểm |
Câu 6 | (x2+3x+1)2 | 4 điểm |
Câu 7 | a= 30 | 4 điểm |
Câu 8 | minM= -36 | 4 điểm |
Câu 9 | 0 | 4 điểm |
Câu 10 | 3 | 4 điểm |
Câu 11 | 15 cm | 4 điểm |
Câu 12 | 7cm | 4 điểm |
Câu 13 | 19% | 4 điểm |
Câu 14 | 32 cm2 | 4 điểm |
Câu 15 | MB= 9cm | 4 điểm |
TỰ LUẬN: (40 điểm)
Gọi vận tốc ô tô dự định đi hết quãng đường AB là x(km/h) ( x> 6) | 4 điểm | ||||
Vận tốc đi hết nửa quãng đường đầu là x+10(km/h) | 4 điểm | ||||
Vận tốc đi hết nửa quãng đường sau là x-6(km/h) | 4 điểm | ||||
Thời gian dự định đi hết quãng đường AB là 60: x (giờ) | 4 điểm | ||||
Thời gian thực tế đi hết nửa quãng đường đầu là 30: (x +10) (giờ) | 4 điểm | ||||
Thời gian thực tế đi hết nửa quãng đường sau là 30: (x -6) (giờ) | 4 điểm | ||||
Theo bài ra ta có phương trình: 30: (x +10)+ 30: (x -6)= 60: x
| 4 điểm |
C. \(\left(3x-1\right)^2=\left(1-3x\right)^2\)
Vì ta có \(|3x-1|=|1-3x|\)
\(\Rightarrow\left(3x-1\right)^2=\left(1-3x\right)^2\)
a, \(\widehat{BMG}=\widehat{AHD}\left(=\widehat{BAH}\right)\)
\(\Delta ADH\infty\Delta GBM\left(g.g\right)\Rightarrow\frac{AD}{GB}=\frac{DH}{BM}\Rightarrow AD.BM=GB.DH\)
Mặt khác, \(AD.BM=a.\frac{a}{2}=\frac{1}{2}a^2\)
\(OB.OD=\left(\frac{a}{\sqrt{2}}\right)^2=\frac{1}{2}a^2\Rightarrow AD.BM=OB.OD=GB.DH\)
\(\Rightarrow\frac{BO}{BG}=\frac{DH}{OD}\Rightarrow BO^2=BG.DH\left(OB=OD\right)\)
b, \(\Delta BOG\infty\Delta DHO\left(c.g.c\right)\Rightarrow\widehat{BGO}=\widehat{DOH}\)
Mà \(\widehat{BOG}+\widehat{BGO}=180^0-\widehat{OBG}=135^0\Rightarrow\widehat{BOG}+\widehat{DOH}=135^0\Rightarrow\widehat{GOH}=45^0\)
Chọn C
C