K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (do a,b,c >0)

Ta có đpcm

28 tháng 7 2019

may hoc thay nghia a

27 tháng 7 2019

#)Góp ý :

dao xuan tung đề lỗi ak bn ?

a) vô lí vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
 

27 tháng 7 2019

Ko phải đâu hai đề khác nhau nha

2 tháng 10 2018

do b,d>0 nhân 2 vế của a/b=c/d với bd

ta có a/b>c/d=> a+d>b+c

2 tháng 10 2018

Bạn trình bày rõ hơn được không?

Bài làm

Giả sử:  \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với ab, ta được

ad + ab > bc + ab

=> a( b + d ) > b( a + c )

\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)    (1)

Lại có: \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với dc, ta được:

ad + dc > bc + dc

=> d( a + c ) > c( b + d )

\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)            (2)

Từ (1) và (2)  \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )

31 tháng 7 2020

Cảm ơn bạn nha

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

28 tháng 7 2019

Ta có : \(\frac{a}{c+a}+\frac{b}{a+b}+\frac{c}{b+c}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\left(đpcm\right)\)

28 tháng 7 2019

Vì  \(a,b,c>0\) nên ta có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

\(\Rightarrow M< \frac{a+c+a+b+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)