K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

với m\(\ge n;p\ge q\)=> (m-n)(p-q) \(\ge0\)<=> mp+nq \(\ge mq+np\)<=> mp+ nq\(\ge\frac{1}{2}\left(m+n\right)\left(p+q\right)\)

giả sử \(a\ge b=>\frac{1}{b+1}\ge\frac{1}{a+1};\)áp dụng bdt trên ta được

\(\frac{a}{b+1}+\frac{b}{a+1}\ge\frac{1}{2}\left(a+b\right)\left(\frac{1}{b+1}+\frac{1}{a+1}\right)\ge\frac{1}{2}\left(a+b\right)\frac{4}{a+1+b+1}\)( theo bdt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\))

vậy \(\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{a+b}\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{a+b}\)đặt a+b=X

ta được \(\frac{2X}{X+2}+\frac{1}{X}=\frac{2X^2+X+2}{\left(X+2\right)X}\ge\frac{3}{2}< =>4X^2+2X+4\ge3X\left(X+2\right)< =>\)(X-2)2 \(\ge0\)(đúng)

dấu '=' sảy ra khi X = a+b=2 và a=b hay a = b =1

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

NV
11 tháng 3 2019

Theo BĐT Holder ta có:

\(9\left(a^3+b^3+c^3\right)=\left(a^3+b^3+c^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(a.1.1+b.1.1+c.1.1\right)^3\)

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\Rightarrow a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

\(\Rightarrow P=\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}.3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=\left(a+b+c\right)^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 3 2019

C/m : \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

Giả sử đpcm là đúng , ta có :

\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right).c^2+c^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a^2+2ab+b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ab\left(a+b\right)+\left(3a^2+6ab+3b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(3a^2c+3ac^2\right)+\left(3bc^2+3b^2c\right)+3ab\left(a+b\right)+6abc\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)+6abc\left(1\right)\)

Do a ; b ; c > 0 , áp dụng BĐT Cô - si , ta có :

\(a^3+b^3+c^3\ge3abc\Rightarrow2\left(a^3+b^3+c^3\right)\ge6abc\)

Từ ( 1 ) \(\Rightarrow6\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)\left(3\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\) ( tự c/m ) , ta có :

\(3\left(a^3+c^3\right)\ge3ac\left(a+c\right)\) ; \(3\left(b^3+c^3\right)\ge3bc\left(b+c\right);3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

\(\Rightarrow6\left(a^2+b^2+c^2\right)\ge3ab\left(a+b\right)+3ac\left(a+c\right)+3bc\left(b+c\right)\left(4\right)\)

( luôn đúng )

Từ ( 3 ) ; ( 4 ) => Điều giả sử là đúng => đpcm

Áp dụng vào bài toán , ta có :

\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}.\frac{9}{a+b+c}=\left(a+b+c\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 12 2018

Sửa đề: \(a+b+c\le6\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

                                                             đpcm

22 tháng 3 2017

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)

1 dòng :)

27 tháng 3 2017

Ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{a+b+2}{\left(a+1\right)\left(b+1\right)}=\frac{3}{ab+2}\left(1\right)\)

Mà \(a+b\ge2\sqrt{ab}\left(1\ge2\sqrt{ab}\right)\Leftrightarrow ab\le\frac{1}{4}\)

Thay vào \(\left(1\right)\) ta được:

\(\frac{3}{ab+2}\ge\frac{3}{\frac{1}{4}+2}=\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Hay \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\) (Đpcm)