Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 510 - 59 + 58 chia hết cho 7
510 - 59 + 58
= 58.(52-5+1)
= 58.21 = 58.3.7 \(⋮\)7 => 510 - 59 + 58\(⋮\)7.
b) 6 + 62 + 63 + 64 + ... + 69 + 610 chia hết cho 7
6 + 62 + 63 + 64 + ... + 69 + 610
= (6+62)+(63+64)+....+69+610
= (6+62)+62.(6+62)+...+68.(6+62)
= 42+62.42+...+68.42
= 42.(1+62+...+68) \(⋮\)7 => 6 + 62 + 63 + 64 + ... + 69 + 610\(⋮\)7
\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có :
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)
Vậy \(A⋮6\)
\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có :
\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(B=2.31+...+2^{96}.31\)
\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)
Vậy \(B⋮31\)
Năm mới zui zẻ ^^
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
A=5^8(5^2-5+1)=5^8*3*7 chia hết cho 7
B=6(1+6)+6^3(1+6)+...+6^9)(1+6)=7(6+6^3+...+6^9) chia hết cho 7
e) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}.\left(3^4-3^3-3^2\right)=3^{24}.45⋮45\left(Đpcm\right)\)
f) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮55\left(Đpcm\right)\)
g) \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=5^6.2^7.555⋮555\left(Đpcm\right)\)
a) \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21⋮7\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(đpcm\right)\)
c) \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=2^7.5^7.111=2^6.222.5^7\)\(⋮222\left(đpcm\right)\)
\(A=5+5^2+5^3+....+5^9+5^{10}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^9+5^{10}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^9.6\)
\(A=6\left(5+5^3+....+5^9\right)\)
vì \(6⋮6\Rightarrow A=6\left(5+5^3+....+5^9\right)\)
\(\Rightarrow A⋮6\)
chúc bạn học giỏi ^^
Ta có :
A=5+52+53...+59+510
A = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 59 + 510 )
A = 5 . (1 + 5 ) + 53 . ( 1 + 5 ) + ... + 59 . ( 1 + 5 )
A = 5 . 6 + 53 . 6 + ... + 59 . 6
A = 6 . ( 5 + 53 + ... + 59 ) \(⋮\)6
Vậy ...